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Abstract

Part 1: Traditional Analysis Conundrums

Although most physicists presume the theoretical basis of relativisti-
cally rotating systems is well established, there may be grounds to call
the traditional analysis of such systems into question. That analysis is
argued to be inconsistent with regard to its prediction for circumferential
Lorentz contraction, and via the hypothesis of locality, the postulates
of special relativity. It is also contended that the traditional analysis is
in violation of the continuous and single valued nature of physical time.
It is further submitted to be in disagreement with the empirical finding
of Brillet and Hall, the global positioning system satellite data, and a
light pulse arrival time analysis of the Sagnac experiment.

Part 2: Resolution of the Conundrums:

Differential Geometry and Non-time-orthogonality

It is postulated that physical constraints on time (its continuous and
single-valued nature) limit the set of possible synchronization/simultaneity
schemes in rotation to one, the “flash from center” scheme. A differ-
ential geometry analysis based on this simultaneity postulate is pre-
sented in which the rotating frame metric is constrained to be locally
non-time-orthogonal (NTO) and due to which, all inconsistencies and
disagreements with experiment are resolved. The hypothesis of locality
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is shown to be invalid for rotation specifically, and generally valid only
for non-inertial frames in which the metric can have all null off diagonal
space-time components (i.e., time is orthogonal to space.) The analysis
approach presented does not contravene traditional relativistic theory
for translating systems and makes many (but not all) of the same pre-
dictions for rotating systems as does the traditional (time orthogonal)
analysis.

Part 3: Experiment and Non-time-orthogonal Analysis

Experiments performed from the 1880s to the present to test special
relativity are summarized, and their relevance to NTO analysis is pre-
sented. One test, that of Brillet and Hall, appears capable of discerning
between the NTO and traditional approaches to relativistic rotation. It
yielded a signal predicted by NTO analysis, but not by the traditional
approach. Other evidence in favor of the NTO approach may be inher-
ent in the global positioning system data, and the Sagnac experiment.

Keywords: Relativistic rotation, non-time-orthogonal, hypothesis of locality, Brillet
and Hall, Sagnac

1. Traditional Analysis Conundrums

1.1 Introduction

Part 1 outlines the traditional approach to relativistic rotation and
discusses various apparent inconsistencies associated therewith. Follow-
ing an analysis of synchronization/simultaneity in rotating frames and
seeming traditional approach problems therein, a new postulate is intro-
duced, which will be used in Part 2 to pose an alternative approach to
resolving the inconsistencies.

1.2 Relevant Relativity Principles

Special relativity theory (SRT) is restricted to inertial systems and is
derived from two symmetry postulates:

1 The speed of light is the same for all inertial observers (it is invari-
ant) and equals c.

2 There is no preferred inertial reference frame. (Velocity is relative,
and the laws of nature are covariant, i.e., the same for all inertial
observers.)

The first postulate, applied to the one-way speed of light, is equivalent
to demanding that Einstein synchronization of clocks holds. In Einstein
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synchronization, one starts from a first clock at time tA on that clock
and sends a light pulse to a second clock fixed in the same frame as the
first. The light pulse is reflected back at the second clock and returns
to the first clock at time tB on the first clock. The time on the second
clock is then set such that its reading when the light was reflected would
have been (tA + tB)/2, the time on the first clock half way between the
emission and reception times. This ensures the one-way speed of light,
measured as the distance traveled between clocks divided by the time
difference of the two clocks, is always c.

In recent years, many relativists have come to consider Einstein syn-
chronization merely a convention, or gauge, that affects no measurable
quantities[1],[2]. For example, in all such gauge theories of synchroniza-
tion, the round trip speed of light is c (though the one-way speed of
light need not be.) Nevertheless, underlying SRT is the assumption that
Einstein synchronization is always one of the possible conventions that
makes valid predictions about inertial frames in the physical world.

General relativity is applicable to non-inertial systems and is based
on additional postulates, including the equivalence principle and the
hypothesis of locality (or sometimes, the “surrogate frames postulate”).
The hypothesis of locality stands as a linchpin in the traditional approach
to relativistic rotation, and thus, I number it among the postulates of
importance to this article.

3 Hypothesis of locality: Locally (i.e., over infinitesimal regions of
space and time), neither gravity nor acceleration changes the length
of a standard rod or the rate of a standard clock relative to a
nearby freely falling (i.e., inertial) standard rod or standard clock
instantaneously co-moving with it. See Møller[3], Einstein[4], and
Mashoon[5].

Stated another way, a local inertial observer is equivalent to a local
co-moving non-inertial observer in all matters having to do with mea-
surements of distance and time. It follows immediately that Einstein
synchronization can be carried out locally, and that for such synchro-
nization, the local one-way speed of light measured in a non-inertial
frame is c. Hence, a Lorentz frame can be used as a local surrogate
for the non-inertial frame. This has a basis in differential geometry, in
which a curved space is locally flat and can be represented locally by
Cartesian coordinates.

Minguzzi[6] and Møller[7], among others, note that the hypothesis of
locality is only an assumption. It is, however, an assumption that, his-
torically, has worked very well in a large number of applications. See, for
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example, the treatment of acceleration by Misner, Thorne, and Wheeler
[8] using instantaneous local Lorentz frames.

1.3 The Traditional Approach

The traditional approach to relativistic rotation assumes the hypothe-
sis of locality is a fundamental and universal truth. As done successfully
in other, non-rotating, cases, values in local co-moving Lorentz frames
are integrated to determine global values for quantities such as distance
and time, which would, in principle, be measured with standard meter
sticks and clocks by an observer in the rotating frame.

The oft-cited example, first delineated by Einstein[9], is the purported
Lorentz contraction of the rim of a rotating disk. (Or alternatively, the
circumferential stresses induced in the disk when the rim tries to contract
but is restricted from doing so via elastic forces in the disk material.)
A local Lorentz frame instantaneously co-moving with a point on the
rim, it is argued, exhibits Lorentz contraction of its meter sticks in the
direction of the rim tangent, via its velocity, v = ωr. This infinitesimal
length contraction is subsequently integrated over all of the local Lorentz
frames instantaneously at rest with respect to each successive point along
the rim. The result is a number of meter sticks that is greater than 2πr,
and thus, the disk surface is concluded to be non-Euclidean, or Riemann
curved[10],[11].

1.4 Inconsistency of Circumferential Lorentz
Contraction

According to SRT, an observer does not see his own lengths con-
tracting. Only a second observer moving relative to him sees the first
observer’s length dimension contracted. Hence, from the point of view
of the disk observer, her own meter sticks are not contracted[12], and
there can be no curvature of the rotating disk surface. The traditional
analysis is thus, inconsistent[13].

Consider further the disk observer looking out at the meter sticks at
rest in the lab close to the disk’s rim. Via the hypothesis of locality (in
which she is equivalent to a local co-moving Lorentz observer), she sees
the lab meter sticks as having a velocity with respect to her. Hence, by
the traditional logic, she sees them as contracted in the circumferential
direction. She must therefore conclude that the lab surface is curved.
But those of us living in the lab know this is simply not true, and again
the analysis is inconsistent.

Although these arguments seem to be rarely considered by tradition-
alists, when they are brought to their attention, the usual defense is that
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“the rotating frame is not an inertial frame and thus is different”. Yet,
the hypothesis of locality, the starting point for the analysis, assumes
that they are not different in this regard.

Furthermore, if the non-inertial argument has any validity, then it
must imply that the length contraction of the rim is absolute, i.e., both
the lab and disk observer agree that the disk meter sticks are contracted.
Yet, consider the limit case of low ω, high r, such that a = ω2r ≈ 0, while
v = ωr is close to the speed of light (the “limit case”). Advocates of the
traditional approach contend that, since the limit case observer fixed to
the rotating disk rim feels no inertial “force”, she becomes, effectively, a
Lorentz observer. In this case, each of the lab and disk observers must
see the other’s meter sticks as contracted and their own as normal. Yet,
the non-inertial argument started with the assumption that the disk
observer’s meter sticks contracted in an absolute way, agreed to by all
observers[14].

Conclusion: Length contraction applied via the traditional analysis
to rotating systems appears self-contradictory.

1.5 Second SRT Postulate Not Valid in Rotation

Without looking outside, an observer on the rim of a rotating disk
can determine her angular velocity ω, using, for example, a Foucault
pendulum. She can also use a spring mass system to measure kx/m =
ω2r, and hence determine r, the distance to the center of rotation. (The
Newtonian limit is used to simplify the example. The conclusion is also
true for relativistic calculations.)

That is, contrary to the dictate of the second postulate, there are
experiments an observer can perform locally from entirely within the
rotating frame to determine her speed in an absolute sense. (To be
precise, her speed with respect to the inertial frame in which her center
of rotation is fixed.) Her velocity is not relative. Both the lab and
the rim fixed observers determine the same value for it. With respect
to circumferential speed, there is a preferred frame, and both observers
agree it is the one where such speed is zero, i.e., the non-rotating lab
frame.

Conclusion: The second relativity postulate does not appear to hold
for rotating systems

1.6 First SRT Postulate: Thought and Sagnac
Experiments
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Figure 1.1. Rotating Disk Observer Measuring Light Speed

1.6.1 Thought Experiment. Consider the following thought
experiment (see Selleri[15]) involving an observer fixed to the rotating
disk of Figure 1 who measures the speed of light.

The observer shown has already laid meter sticks along the rim cir-
cumference and determined the distance around that circumference. As
part of her experiment, she has also set up a cylindrical mirror, reflecting
side facing inward, all around the circumference. She takes a clock with
her and anchors herself to one spot on the disk rim. When her clock
reads time T = 0 (left side of Figure 1) he shines two short pulses of
light tangent to the rim in opposite directions. The mirror will cause
these light pulses to travel circular paths around the rim, one clockwise
(cw) and one counterclockwise (ccw).

From the lab, we see the cw and ccw light pulses having the same
speed c. However, as the pulses travel around the rim, the rim and
the observer fixed to it move as well. Hence, a short time later, as
illustrated in the right side of Figure 1, the cw light pulse has returned
to the observer, whereas the ccw pulse has yet to do so. A little later
(not shown) the ccw pulse will have caught up to the observer.

For the observer, from her perspective on the disk, both light rays
travel the same number of meters around the circumference. But her
experience and her clock readings tell her that the cw pulse took less
time to travel the same distance around the circumference than the ccw
pulse.

She can only conclude that, from her point of view, the cw pulse
traveled faster than the ccw pulse. Hence, the speed of light as measured
on the rotating disk is anisotropic and different from that measured in
the lab. Thus, one could conclude that the first relativity postulate, in
the context of the hypothesis of locality, is violated.



Toward a Consistent Theory of Relativistic Rotation 7

Arguments against this conclusion are rooted in two interrelated con-
cepts: i) purported differences between the global (as measured in the
above thought experiment) and local, physical speeds of light[16],[17],

[18], and ii) the synchronization/simultaneity employed[19],[20]. The
author has extensive remarks on this in a subsequent section, but for
now, submits that the appropriate synchronization scheme comprises
the following.

Consider the ccw light pulse and the time difference on the clock
held by the observer in Figure 1 between the emission (assume initial
clock time is tA = 0) and reception (clock time tB) events. Employ the
synchronization method of Section 1.2, only instead of using a back and
forth round trip for light (Einstein synchronization), use a circular round
trip. That is, the time on the clock half way along the round trip ccw
path (at 180˚ of the disk here), at the instant the ccw light pulse was
there, should be (tA + tB)/2 = tB/2. With this time, the ccw speed of
light will be the same as that computed for the round trip, i.e., it will be
less than c. Now synchronize the clock at 90˚ the same way. Assume its
setting at the instant the light pulse passed was half that on the clock at
180˚ when the light passed that clock (or equivalently, 1/4 of tB.) Doing
this, one again finds the ccw speed of light to be the same value, which
is < c. Repeat over smaller intervals until, in the limit, one finds the
local speed of light to be the same, and therefore not equal to c.

The entire procedure can be repeated for the cw light pulse, and one
will find the clocks at each location done via the cw and ccw methods
are synchronized, i.e., they are the same clocks. One will also find that
the local speeds of light are anisotropic and equal to the same values as
the global ones determined using a single clock at the emission/reception
point.

Conclusion: While it may appear that the local speed of light, being
anisotropic, violates the first relativity postulate, there is still the possi-
bility that Einstein synchronization may be valid locally (as one of the
possible local synchronization schemes). This would mean that for such
synchronization, the local speed of light would be c, and one could get
correct results using the hypothesis of locality and local Lorentz frame
analyses.

Challenge to traditionalists: The author does not believe this
and challenges advocates of the traditional approach to begin with the
assumption of local isotropic light speed, and without looking outside
of the rotating frame, kinematically derive the result that the cw light
pulse arrives back at the emission point before the ccw one.
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1.6.2 The Sagnac Experiment. In 1913, G. Sagnac[21] car-
ried out a now famous experiment, similar in many ways to the thought
experiment of Figure 1. On a rotating platform, he split light from a
single source into cw and ccw rays that traveled identical paths in oppo-
site directions around the platform. He combined the returning rays to
form a visible interference pattern, and found that the fringes shifted as
the speed of rotation changed. A number of others[22],[23] subsequently
performed the same test with the same results.

If the speed of light were locally invariant and always equal to c, then
speeding up or slowing of the rotation rate of the platform should not
change the location of the fringes. However, the fringes do change with
speed and once again we have a test (Sagnac) whereby we can determine
a preferred frame, in seeming violation of the second relativity postulate
and the hypothesis of locality.

Putative explanations for this in the context of the traditional ap-
proach hinge, once again, on synchronization/simultaneity and global
vs. local arguments. These are addressed in the following section.

I do contend that the thought experiment of Figure 1 makes it clear
that any explanation for the Sagnac experiment, from the point of view
of the disk reference frame, must account for different arrival times for
the cw and ccw light pulses. Analyses based on Doppler shifts[24] or
DeBroglie momentum/wave length[25] changes are simply not sufficient
to explain this.

The calculation of this arrival time difference, derived from the lab
frame, is well known and is repeated for reference in the Appendix.

1.7 Synchronization/Simultaneity in the
Traditional Approach

1.7.1 The Traditional Approach “Time Gap”. Consider
the non-rotating (lab) frame as K; the rotating (disk) frame as k. Figure
2 depicts inertial measuring rods in inertial frames K1 to K8 with speeds
ωr instantaneously at rest with respect to eight points on the rotating
disk rim as shown. For practical reasons, only eight finite length rods
are shown, and one can consider them as a symbolic representation of an
infinite number of such rods of infinitesimal length. A and B are events
located in space at the endpoints of the K1 rod which are simultaneous
as seen from K1; B and C are events located in space at the endpoints of
the K2 rod which are simultaneous in K2; and so on for the other events
C to J. A,B, ...J can be envisioned as flashes of light emitted by bulbs
situated equidistantly around the disk rim.
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Figure 1.2. Inertial Co-Moving
Frame

Figure 1.3. Co-Moving Frames Inte-
gration Path

p is a spatial (three-dimensional) point fixed to the disk at which both
A and J occur. q is the spatial point on the disk at which B occurs. In
principle, A, B, ... J, as well as p and q are located on the disk rim though
they may not look so in Figure 2, since the co-moving rods shown are
not infinitesimal in length.

In the traditional analysis, the hypothesis of locality is invoked to
claim that times and distances measured by standard measuring rods
and clocks in the local co-moving inertial frames are identical to those
riding with the disk.

Note that although events A and B are simultaneous as seen from K1,
they are not simultaneous as seen in K (via SRT for two inertial frames in
relative motion). As seen from K, A occurs before B. Similarly, B occurs
before C, and so on around the rim. If the events are light flashes, a
ground based observer looking down on the disk would see the A flash,
then B, then C, etc. Hence we conclude that as seen from K, A occurs
before J even though A and J are both located at the same 3D point
p fixed to the rim. As seen from K, during the time interval between
events A and J, the disk rotates, and hence the point p moves. (As an
aside, Figure 2 can now be seen to be merely symbolic since events A to
J would not in actuality be seen from K to occur at the locations shown
in Figure 2. That is, by the time the K observer sees the B flash, the
disk has rotated a little. It rotates a little more before he sees the C
flash, etc.)

According to the traditional treatment of the rotating disk, one then
uses the Ki rods and integrates (adds the rod lengths) along the path
AB ...J, moving sequentially from co-moving inertial frame to co-moving
inertial frame. This path is represented by the solid line in Figure 3, and
one can visualize small Minkowski coordinate frames situated at every
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point along the curve AJ (see K2 in Fig. 3) with integration taking place
along a series of spatial axes (such as X2 in Fig. 3). By doing this one
arrives at a length for AJ, the presumed circumference of a disk of radius
r, of

AJ =
2πr

√

1 − ω2r2/c2
> Circumference in lab, (1.1)

and thus, the disk surface is concluded to be non-Euclidean (Riemann
curved.)

But consider that since point p moves along a timelike path as seen
from K (see dotted line in Fig. 3), a time difference between events A at
0o and J at 360o must therefore exist as measured by a clock attached
to point p. To continue from J to A requires a jump in time, and
thus, the traditional analysis approach leads to a discontinuity in time
(or alternatively, multi-valued time), a seemingly impossible physical
situation. Further, as noted by Weber[26], this means that if light rays
are sent 360o around the rim to synchronize the clock at J with that
at A, then the two clocks (which are really one and the same clock)
are not in synchronization. That is, each clock on the disk is out of
synchronization with itself.

Still further, according to the traditional analysis, time all along the
path AJ is fixed. Thus, by that analysis, which depends on the locality
hypothesis and integration of values (time in this case) from local frame
to local frame, A and J must be simultaneous. But they are not.

1.7.2 Traditional Approach to Resolve the “Time Gap”.
In recent years, this problem has been treated as if this “time gap” were
a mathematical artifact, and approaches labeled “desynchronization”
[27],[28],[29] and “discontinuity in synchronization”[30],[31] have been
proposed that entail multiple clocks at a given event. These approaches
seem motivated by the gauge theory of synchronization philosophy that
time settings on clocks are inherently arbitrary.

Furthermore, the time gap is often said to be identical in nature to
traveling at constant radius in a polar coordinate system. The φ value
is discontinuous at 360o. Similar logic applies for time, with the Inter-
national Date Line for the time zone settings on the earth. If one starts
at that line and proceeds 360o around the earth, one returns to find one
must jump a day in order to re-establish one’s clock/calendar correctly.

1.7.3 Arguments for Physical Interpretation of the “Time
Gap”. The gauge synchronization philosophy champions innu-
merable, equally valid, synchronization schemes. Yet, within any one of
those schemes, time is single valued and continuous, and clocks are all in
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synchronization with themselves. For a given synchronization method,
each event within a given frame has a single time associated with it.

In the desynchronization approaches, a given event in a given rotating
frame, for a given synchronization method, can have any number of
possible times on it. For example, the clock at point p in Fig. 2 has
one time on it at event A. If one Einstein synchronizes the clock at 360o

(i.e., the same clock at p) with ccw light rays, one gets another time
setting. Thus, one has a choice of which of two times one prefers for
any given event at point p. If, on the other hand, one synchronizes the
clock at 360o via cw light rays, one gets yet another setting, and a third
possible time to choose for any given event. Consider yet another path
in which the light ray goes radially inward 1 meter, then 360o around,
then radially outward 1 meter. One then gets yet another setting for the
clock at p. Since there are an infinite number of possible paths by which
one could synchronize the clock at p, there are an infinite number of
possible times for each event at p. (This does not happen in translation.
Any possible path for the light rays results in the same unique setting,
for a given synchronization scheme, on each clock in the frame.)

This plethora of possible settings for the same clock results from in-
sisting on “desynchronization” of clocks in order to keep the speed of
light locally c everywhere. And thus, one is in the position of choosing
whichever value for time one needs in a given experiment in order to get
the answer one insists one must have (i.e., invariant, isotropic local light
speed.) One can only then ask if this is really physics or not. Can an
infinite number of possible readings on a single clock at a single event for
a single method of synchronization be anything other than meaningless?

The polar coordinate analogy, I believe, confuses physical discontinu-
ity with coordinate discontinuity. In 2D, place a green X at 0o, travel
360o at constant radius, and then place a red X. The red and green
marks coincide in space. There is no discontinuity in space between
them, although there is a discontinuity in the coordinate φ.

Flash a green light on the equator at the International Dateline, then
trace a path once around the equator along which no time passes. If
you flash a red light at the end of that path, the red and green flashes
are coincident in space and time. There is no physical discontinuity,
although your time zone clocks show a coordinate discontinuity.

In Fig. 3, flash a green light at event A. Travel 360o on the disk along
the space-time path AJ (along which no time passes according to the
traditional analysis), then flash a red light at event J. The two lights are
not coincident. There is real world space-time gap between them, and
they exist at different points in 4D. The discontinuity is physical, not
merely coordinate.
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Peres was aware of this time discontinuity, calling it a “heavy price
which we are paying to make the [circumferential] velocity of light ...
equal to c”[32]. Dieks[33] noted that though arbitrary in certain senses,
time in relativity must be “directly linked to undoubtedly real physical
processes”. This author agrees.

1.7.4 The Only Physically Possible Synchronization/Simultaneity.
There are potential choices for synchronization/simultaneity in the

rotating frame other than Einstein’s. The traditional one with local
Einstein synchronization around the disk rim is based on the Lorentz
transformation from the lab to the local co-moving inertial frame, i.e.

cdTi =
1

√

1 − v2/c2
(cdT − v

c
dX) = γ(cdT − v

c
dX) (1.2)

where v = ωr, dT is the time interval in the lab, dX is the space interval
in the lab along the disk rim, dT i is the time interval in the local co-
moving inertial frame, which we presume, by the locality hypothesis,
equals the time interval on the disk. We could just as well have chosen
[34]

cdTi = γ(cdT − κdX) (1.3)

where κ could have any value other than v/c.
However, for any κ 6= 0, we would again have a time discontinuity,

and all the issues with multiple event times and clocks being out of
synchronization with themselves of the prior section.

I suggest that, prior to all else, any theory of rotation must be compli-
ant with the physical world constraint that time be continuous and single
valued (within a given frame, and for a given synchronization scheme.)
That is only possible for a synchronization/simultaneity scheme where
κ = 0. For this scheme, events in the lab that are simultaneous (i.e.,
have dT = 0 between them) are also simultaneous in the rotating frame
(have dt = 0).

Postulate: Any synchronization/simultaneity scheme for the rotat-
ing frame for which that frame and the lab do not share common simul-
taneity results in a physical time discontinuity and is thus unacceptable
on physical grounds.

The traditional approach to rotation is at odds with this postulate.

1.8 Experiment and the Traditional Approach

In Part 3, virtually all of the experiments that have been carried
out to verify SRT are reviewed. One of these, the Michelson-Morley
type experiment performed by Brillet and Hall[35], found a persistent,
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anomalous, non-null signal at the 10−13 level, which is not predicted by
SRT. The approach to relativistic rotation of Part 2, which is based on
the above postulate, predicts this signal, and otherwise, makes the same
predictions as the traditional approach for the remaining tests.

Furthermore, as a result of studies on the Global Positioning System
(GPS) data for the rotating earth, recognized world leading GPS expert
Neil Ashby states

“Now consider a process in which observers in the rotating frame at-
tempt to use Einstein synchronization..... Simple minded use of Einstein
synchronization in the rotating frame ... thus leads to a significant er-
ror”.[36]

He also recently noted in Physics Today,
“ .. the principle of the constancy of c [the speed of light] cannot be

applied in a rotating reference frame ..” [37].

1.9 Summary of Part 1

Thought experiments, actual experiments, and the physical nature
of the space-time continuum appear discordant with the traditional ap-
proach to relativistic rotation.

2. Resolution of the Conundrums: Differential
Geometry and Non-time-orthogonality

“.. a good part of science is distinguishing between useful crazy ideas
and those that are just plain nutty.”

Princeton University Press advertisement for the book “Nine Crazy
Ideas in Science”

2.1 Introduction

Part 2 poses an alternative approach to relativistic rotation that re-
solves the inconsistencies, and as will be seen in Part 3, appears to have
better agreement with experiment than the traditional approach. There
are two fundamental steps to the alternative approach.

1 Postulate that, in accord with physical world logic as presented
in Part 1, simultaneity/synchronization in the rotating frame can
only be such that time in that frame is continuous and single val-
ued.

2 Apply differential geometry and note resulting predictions.

Before beginning the analysis, relevant background material from dif-
ferential geometry is presented in Section 2.2.
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2.2 Physical vs. Coordinate Components

If one has coordinate components, found from generalized coordinate
tensor analysis, for some quantity, such as stress or velocity, one needs
to be able to translate those into the values measured in experiment.
For some inexplicable reason, the method for doing this is not typically
taught in general relativity (GR) texts/classes, so it is reviewed here.
(Note that often in GR, one seeks invariants like dτ , ds, etc., which are
the same in any coordinate system, and in such cases, this issue does
not arise. The issue does arise with vectors/tensors, whose coordinate
components vary from coordinate system to coordinate system.)

The measured value for a given vector component, unlike the coordi-
nate component, is unique within a given reference frame. In differential
geometry (tensor analysis), that measured value is called the “physical
component”.

Many tensor analysis texts show how to find physical components
from coordinate components[38]. A number of continuum mechanics
texts do as well[39]. The only GR text known to the present author
that mentions physical components is Misner, Thorne, and Wheeler[40].
Those authors use the procedure to be described below, but do not derive
it[41]. The present author has written an introductory article on this,
oriented for students, that may be found at the Los Alamos web site[42].
The following is excerpted in part from that article.

The displacement vector dx between two points in a 2D Cartesian
coordinate system is

dx = dX1ê1 + dX2ê2 (1.4)

where the êi are unit basis vectors and dX i are physical components
(i.e., the values one would measure with meter sticks). For the same
vector dx expressed in a different, generalized, coordinate system we
have different coordinate components dx i 6= dX i (dx i do not represent
values measured with meter sticks), but a similar expression

dx = dx1e1 + dx2e2, (1.5)

where the generalized basis vectors ei point in the same directions as the
corresponding unit basis vectors êi, but are not equal to them. Hence,
for êi, we have

êi =
ei

|ei|
=

ei√
ei · ei

=
ei√
gii

(1.6)

where underlining implies no summation.
Substituting (1.6) into (1.4) and equating with (1.5), one obtains

dX1 =
√

g11dx1 dX2 =
√

g22dx2, (1.7)
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which is the relationship between displacement physical (measured with
instruments) and coordinate (mathematical value only) components.

Consider a more general case of an arbitrary vector v

v = v1e1 + v2e2 = v1̂ê1 + v2̂ê2 (1.8)

where, e1 and e2 here do not, in general, have to be orthogonal, ei and êi

point in the same direction for each index i, and carets over component
indices indicate physical components. Substituting (1.6) into (1.8), one
readily obtains

vî =
√

giiv
i, (1.9)

which we have shown here to be valid in both orthogonal and non-
orthogonal systems.

As a further aid to those readers familiar with anholonomic coordi-
nates (which are associated with non-coordinate basis vectors superim-
posed on a generalized coordinate grid), physical components are special
case anholonomic components for which the non-coordinate basis vectors
have unit length.

It is important to recognize that anholonomic components do not
transform as true vector components. So one can not simply use physical
components in tensor analysis as if they were. Typically, one starts with
physical components as input to a problem. These are converted to
coordinate components, and the appropriate tensor analysis carried out
to get an answer in terms of coordinate components. One then converts
these coordinate components into physical components as a last step,
in order to compare with values measured with instruments in the real
world.

As a basis vector is derived from infinitesimals (derivative at a point),
one sees (1.9) is valid locally in curved, as well as flat, spaces, and can be
extrapolated to 4D general relativistic applications. So, very generally,
for a 4D vector vµ and a metric signature (-,+,+,+)

vî =
√

giiv
i v0̂ =

√−g00v
0, (1.10)

where Roman sub and superscripts refer solely to spatial components
(i.e. i = 1,2,3.)

2.3 Alternative Analysis Approach

We begin with the simultaneity postulate of Section 1.7.4, repeated
below for convenience.

Postulate: Any synchronization/simultaneity scheme for the rotat-
ing frame, for which that frame and the lab do not share common simul-
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taneity, results in a physical time discontinuity and is thus unacceptable
on physical grounds.

2.3.1 Disk Transformation and Metric. As will be dis-
cussed, the global transformation from the lab to the rotating frame
apparently first used by Langevin[43] to find a suitable metric for the
rotating frame incorporates the above postulate. This transformation
is used in the following analysis, which parallels that of Klauber[44].
The correctness of the transformation can be judged by whether the
predictions made by using it match experiment.

This transformation, between the non-rotating (lab, upper case sym-
bols) frame to a rotating (lower case) frame, is

cT = ct
R = r
Φ = φ + ωt
Z = z .

(1.11)

ω is the angular velocity of the rotating frame as seen from the lab, and
cylindrical spatial coordinates are used. The coordinate time t for the
rotating system equals the proper time of a standard clock located in
the lab. Substituting the differential form of (1.11) into the line element
in the lab frame

ds2 = −c2dT 2 + dR2 + R2dΦ2 + dZ2 (1.12)

results in the line element for the rotating frame

ds2 = −c2(1− r2ω2

c2
)dt2 + dr2 + r2dφ2 + 2r2ωdφdt + dz2 = gαβdxαdxβ .

(1.13)
Note that the metric in (1.13) is not diagonal, since gφt 6= 0, and this
implies that time is not orthogonal to space (i.e., a non-time-orthogonal,
or NTO, frame.)

2.3.2 Time on the Disk. Time on a standard clock at a fixed
3D location on the rotating disk, found by taking ds2 = −c2dτ and dr
= dφ = dz = 0 in (1.13), is

dτ =
√

1 − r2ω2/c2dt =
√−gttdt, (1.14)

This varies with radial position r. At the axis of rotation (where r = 0),
the standard clock agrees with the clock in the lab. At other locations,
standard clock time is diluted by the Lorentz factor, as in traditional
SRT. The coordinate time everywhere on the disk is t, and that equals
the time T in the lab.
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The time difference between two events at two locations (each hav-
ing its own clock) on the disk, in coordinate components, is dt. The
corresponding physical time difference is

dtphys = dt̂ =
√−gttdt =

√

1 − r2ω2/c2dt. (1.15)

If the two locations happen to be one and the same location, one obvi-
ously gets (1.14).

Note that two events seen as simultaneous in the lab have dT = 0
between them. From the first line of (1.11) and (1.15), the same two
events must also have dtphys = 0, and thus they are also seen as simul-
taneous on the disk. This statement is true for all standard (physical)
clocks on the disk. Though the standard clocks at different radii thereon
run at different rates, and thus can not be synchronized, they can share
common simultaneity. The lab shares this common simultaneity with all
of the disk clocks, and thus our postulate above holds for transformation
(1.11), and the resulting (NTO) metric of (1.13).

Note further, that the simultaneity chosen here is equivalent in the
physical world to what is sometimes called “flash from center” simul-
taneity (or synchronization if one is confined to clocks at fixed radius).
In that scheme, one imagines a flash of light on the axis of rotation whose
wave front propagates outwardly in all radial directions. Events when
the wave front impacts individual points along a given circumference are
considered simultaneous.

It is significant that the “flash from center” synchronization is the
same as that proposed (via other logic) near the end of Section 1.6.1.

2.3.3 Local Speed of Light on the Disk. For light ds2 =
0. Inserting this into (1.13), taking dr=dz=0, and using the quadratic
equation formula, one obtains a local coordinate velocity (generalized
coordinate spatial grid units per coordinate time unit) in the circumfer-
ential direction

vlight,coord,circum =
dφ

dt
= −ω ± c

r
, (1.16)

where the sign before the last term depends on the circumferential di-
rection (cw or ccw) of travel of the light ray. The local physical velocity
(the value one would measure in experiment using standard meter sticks
and clocks in units of meters per second) is found from this to be

vlight,phys,circum =

√
gφφdφ

√−gttdt
=

− rω ± c
√

1 − ω2r2

c2

=
− v ± c
√

1 − v2

c2

. (1.17)
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Note that for this approach, the local physical speed of light in rotat-
ing frames is not invariant or isotropic, and that this lack of invari-
ance/isotropy depends on ω, the angular velocity seen from the lab.
Note particularly that this result is a direct consequence of the NTO na-
ture of the metric in (1.13). If ω=0, local physical (measured) light speed
is isotropic and invariant, the metric is diagonal, and time is orthogonal
to space.

I thus call this alternative analysis method, the NTO approach to
relativistic rotation.

2.4 Implications of NTO Approach

2.4.1 Hypothesis of Locality. Local physical light speed
in the rotating frame, according to the NTO approach, is not equal to
c. Yet, in a local, co-moving, Lorentz frame, which via the hypothesis
of locality is equivalent locally to the non-inertial frame, the physical
speed of light is always c. Thus, a local co-moving Lorentz frame is not
equivalent locally to the rotating frame, and the hypothesis of locality
is not valid for such frames. One does not measure the same values for
velocity, and hence by implication for time and space, in the two frames.

This is a direct result of the simultaneity postulate, required to keep
time in the rotating frame continuous and single-valued. That require-
ment results in a rotating frame that can only be NTO, i.e., it can only
have a metric with off diagonal terms in the metric.

I submit that the hypothesis of locality remains true only for those
non-inertial frames in which it is possible for the metric to have all
null off-diagonal space-time components. This set of frames comprises
the vast majority of problems encountered in GR. Rotation is a critical
exception.

2.4.2 Absolute Nature of Simultaneity in Rotation. In
NTO analysis, simultaneity/synchronization on the rotating disk, unlike
that in the gauge theory of synchronization, is unique (absolute.) The
gauge theory validity, it is submitted, is restricted to translating frames
and does not apply to rotation. This is not unlike other differences
between rotation and translation. Velocity in rotation, for example,
has an absolute quality, whereas in translation it does not. There is a
preferred frame in rotation, upon which everyone agrees (the frame with
no Coriolis effect, for example); in translation, there is no such frame.

2.4.3 Lorentz Contraction Revisited. To determine Lorentz
contraction of meter sticks, we merely need to compare physical length
in the circumferential direction in both the lab and rotating frames, i.e.,
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look at the physical component for dΦ and dφ. This is equivalent to
finding the proper length when dT = 0 in the first frame (lab here), and
dt = 0 in the second frame (disk here), which is what one does in SRT.

The distance between two points along the circumference in the lab
in meter sticks is

dΦphys = dΦ̂ =
√

gΦΦdΦ = RdΦ = R(Φ2 − Φ1), (1.18)

which is not surprising, and which (for dR = dT = dZ = 0) equals ds.
(1.18) represents the number of meter sticks between points 1 and 2 in
the lab. Now, consider two 3D points on the disk located instantaneously
at the same place as points 1 and 2 in (1.18). We ask, how many
meter sticks span that distance as measured on the disk? That distance
between points 1 and 2 in meter sticks is

dφphys = dφ̂ =
√

gφφdφ = rdφ = r(φ2 − φ1). (1.19)

According to (1.11), φ1 = Φ1 − ωt1 and φ2 = Φ2 − ωt2. Since, r = R
and dt = t2 − t1 = 0, (1.18) and (1.19) are equal. The disk observer sees
the same number of meter sticks between two points as the lab observer
does between those points, and hence, there is no Lorentz contraction.

Note that we would need a metric component gφφ 6= r2 in the rotating
frame to have Lorentz contraction. The postulate of simultaneity/time
continuity leads to the metric of (1.13), which is NTO, and which has
gφφ = r2.

The Lorentz contraction issue is treated more extensively, and with
graphical illustrations, in Klauber[44]. The limit case for NTO analysis
is also discussed therein though it is treated at great length in Klauber
[45], and found to be free of inconsistencies.

2.4.4 Sagnac and Thought Experiments. A complete and
general derivation of the Sagnac result from the rotating frame using
NTO analysis can be found in Klauber[46]. Shown below is the simpler
derivation for a circumferential light path whose center is the axis of
rotation. Note that different speeds for light in the cw and ccw directions
is inherent in the NTO approach, and thus that approach is completely
consonant with the thought experiment of Part 1, Section 1.6.1.

The difference in time measured on a ccw rotating disk between two
pulses of light traveling opposite directions along a circumferential arc
of length dl is

dtphys =
dl

v
−

− dl

v+

, (1.20)
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where v+ is the speed for the cw light ray and v
−

is the speed for the
ccw ray. Using (1.17) this becomes

dtphys =
dl

√

1 − v2/c2

c − v
− dl

√

1 − v2/c2

c + v
=

v

c2

2dl
√

1 − v2/c2
. (1.21)

By integrating the RHS of (1.21) from 0 to 2πr (recall there is no Lorentz
contraction), the LHS becomes the time difference on the clock fixed at
the emission/reception point,

∆tphys =
ωr

c2

2(2πr)
√

1 − ω2r2/c2
=

4ωA

c2
√

1 − ω2r2/c2
, (1.22)

which agrees with the derivation from the lab frame of the Appendix.

2.4.5 Brillet and Hall. The Brillet and Hall[35] experiment
is described in Part 3. It remains to this day the only test of sufficient
accuracy to detect any non-null Michelson-Morley (MM) effect due to
the surface speed of the earth rotating about its axis. Brillet and Hall
found null signals for the solar and galactic orbit speeds. However, they
noted a persistent non-null signal at 2 X 10−13, which had fixed phase
in the lab frame.

This signal is not predicted by traditional SRT, which insists on local
Lorentz invariance for light speed, and was thus simply deemed “spuri-
ous” without further explanation. However, this signal is predicted by
NTO analysis due to the earth surface speed. (See Klauber[47].)

2.4.6 Gravitational Orbit vs. True Rotation. One could
ask why any test should get a null signal for the solar and galactic orbital
velocities, but a non-null signal for the earth surface speed from its own
rotation.

The answer is that a body in gravitational orbit is in free fall, and
is therefore Lorentzian. No centrifugal “force” is felt, and no Foucault
pendulum moves, as a result of revolution in orbit. There is no exper-
imental means by which one could determine (without looking outside
at the stars) one’s rate of revolution in orbit. Hence, you can not de-
termine any absolute circumferential speed, and the second postulate of
relativity holds. Related logic[48] leads to the conclusion that the speed
of light on such a body is invariant and equal to c as well.

Thus, the usual form of relativity should hold for gravitational orbits
and one should expect a null Michelson-Morley result for orbital speeds,
which is just what is measured. However, one can use instruments to
determine the speed of the earth’s surface about its axis, and therefore
we should expect that relativity theory will not hold in precisely the
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same form for that case. It is submitted that the Brillet and Hall result
justifies that expectation.

This subject is treated in depth in Klauber[48].

2.4.7 NTO vs. Selleri Transformations. In treating rota-
tion, Selleri[49] uses the same simultaneity as the lab (though he advo-
cates an “absolute” simultaneity that pervades translation as well.) He
finds anisotropic one-way light speed on a rotating disk as

vlight,phys,circum,Selleri =
−ωr ± c

1 − ω2r2/c2
(1.23)

for the cw and ccw speeds of light along the circumference. Comparing
this with the NTO relation of (1.17), one finds the two differ by a factor
of 1/

√

1 − ω2r2/c2.
Selleri shows that his relation (1.23) results in a circular round trip

speed for light (one way around the rim) that agrees with (the first order)
Sagnac experimental results. However, for a back and forth round trip
for light along the same path, he shows his relation results in a round trip
speed of precisely c. Thus, he predicts a null result for any Michelson-
Morley type experiment.

NTO analysis on the other hand, due to the Lorentz factor difference
from (1.23), predicts a back and forth round trip speed for light as not
equal to c. Therefore, it predicts a non-null result for MM experiments
(which are sensitive enough to detect effects from the earth surface speed
due to its own rotation.)

This difference can be attributed to the lack, in the NTO approach, of
circumferential Lorentz contraction, as opposed to the inclusion of such
contraction in the Selleri approach. Given Lorentz contraction, light
rays will travel a greater number of meter sticks, and thus speed will be
increased by the magnitude of that contraction. This is the difference
between (1.23) and (1.17).

2.4.8 Co-moving vs. Disk-fixed Observers. It should be
clearly noted that in the NTO approach, the rotating disk fixed observer
and the local co-moving Lorentz observer are not equivalent. They do
not, for example, see the lab meter sticks as having the same length.
This is in accord with earlier statements regarding the invalidity of the
hypothesis of locality for rotating frames.

From another perspective, it could be claimed that the two observers
are not truly co-moving, as the disk observer at r is rotating (at ω),
whereas the local Lorentz observer is not.
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2.5 Summary of Part 2

By adopting
1) the postulate that time in a rotating frame must be continuous and

single valued (each clock must be in synchronization with itself), and
2) the specific transformation of form (1.11) that incorporates that

postulate,
one can develop an NTO theory for rotation that resolves all conundrums
of Part 1, and in which the physical speed of light is constrained to be
locally anisotropic. One finds agreement with experiment, including the
Brillet and Hall test result, which is not predicted by the traditional
approach to relativistic rotation.

One also finds the hypothesis of locality can only be true for non-
inertial frames in which the metric can be expressed in diagonal form
and still maintain continuity in time. In rotation, this is not true, and
the local co-moving observer does not see events (in particular, meter
stick lengths) in the same way as the disk-fixed observer.

3. Experiment and Non-time-orthogonal
Analysis

3.1 Introduction

Part 3 reviews the experiments that have been performed to test spe-
cial relativity, and implicitly therein, the hypothesis of locality and the
traditional approach to relativistic rotation. Results of these experi-
ments are examined in order to compare the predictive capacity of the
NTO and traditional analysis approaches.

3.2 The Experiments

Table 1 is an extensive list of experiments performed since 1887 capa-
ble of evaluating at least one aspect of SRT. Particular experiments are
referred to herein via the symbol in the first column. A terse description
of each is given in column two, with the year and author citations in col-
umn three. Note the acronym SRT implies both special relativity theory
and the traditional approach to rotation. Column four briefly summa-
rizes how the NTO effect in a given experiment compares with the tra-
ditional approach effect. The last two columns compare the predictions
of NTO and the traditional approach (Trad) for the given experiment.
For a summary of JPL, Mössbauer, TPA, and GPA, see Will[50]. For
a summary of Hughes-Drever, BH, NBS, UWash, and Mössbauer see
Haugan and Will[51].
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Three experiments known to the author are not included in the table
because their results were contrary to both SRT and NTO theories.
What these results mean is subject to debate, though most physicists
who are aware of them believe they must be in error. The earliest of
these was by Miller[52], a highly respected colleague of Michelson. He
repeated the Michelson-Morley test four times over many years, with
various equipment in various places, and much of the work was done
jointly with Morley. The other experiments reporting results contrary
to SRT were by Silvertooth[53] and Marinov[54]. In any event, these
experiments do not discern between the Trad and NTO approaches, and
are referenced here for completeness.

3.3 The Comparisons

Both the traditional and NTO approaches predict time dilation, and
experiments measuring this, such as PartAcc (see table), would, for the
most part, provide no capability of differentiating between approaches.
Also, Doppler shift effects tend to be the same in NTO and Trad, though,
for certitude, each experiment comprising Doppler measurement needs
to be evaluated on its own.

Tests of the speed of light itself, such as MM, should be more directly
indicative. These must, however, have i) sufficient accuracy to detect
any effect from the relatively low earth surface speed about its axis, and
ii) apparatus that turns with respect to the earth surface. The MM,
Post MM, and Joos tests, for example, lacked the first of these. The
JPL and CORE experiments lacked the second. The LFV test did not
meet either criterion.

For some tests, there is uncertainty. For example, in the ODM exper-
iment, rotation of the apparatus yielded a persistent ∼1.5 km/sec vari-
ation, which was attributed to the earth’s magnetic field. This would,
however, mask any NTO effect (at ∼0.35 km/sec), and yield uncertainty
as to whether Trad predicts the result or not. In the Hughes-Drever test,
Doppler shifts are measured and NTO usually predicts the same shift as
Trad. Extensive analysis would be required, however, to be certain.

The most interesting of the tests is BH (Brillet and Hall), as this is the
only one for which NTO and Trad differ with certainty with regard to
results. BH used a Fabry-Perot interferometer that rotated with respect
to the lab. A fraction of the light ray incident on the interferometer
emerged directly from the far end. Another portion of the ray was
reflected at the far end and forced to travel round trip, rear to front
to rear, before emerging. The different portions interfered to form a
fringe pattern. If the round trip speed of light were anisotropic, the
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time for it to travel back and forth inside the interferometer would vary
with orientation of the apparatus. This, in turn, would cause the fringe
pattern, and thus, the signal BH monitored, to vary. In Newtonian
theory, this variation, peak-to-peak and to second order, is 1

2
v2/c2, where

v is the maximum change from c of the speed of light. As shown by
Klauber[47], the NTO effect on light transit time is quantitatively the
same (though subtle calculational differences exist from the Newtonian
analysis.)

The speed of the earth surface about its axis at the location of the BH
test is .355 km/sec. For this, the amplitude of the variation via NTO
theory should be

1

4

v2

c2
=

1

4

(

.355

3 × 105

)2

= 3.5 × 10−13 (1.24)

at twice the apparatus rotation rate. The BH test found a “persistent”
∼ 1.9 × 10−13 signal at that rate and with fixed phase relative to the
earth surface. They deemed this signal “spurious”, because it seemed
inexplicable. The character of the BH signal and its proximity in value to
(1.24) should, of themselves, be intriguing. However, there is a secondary
effect of light speed anisotropy on the BH signal.

The path of travel is altered slightly when the light ray direction is
transverse to the principle direction of anisotropy. In a heuristic sense,
the ray seems to be pushed “sideways”. In the BH experiment, this
would result in a shifting of the fringe pattern, and a concomitant change
in the measured signal. Klauber[47] calculated this effect and found it
dependent on certain dimensions of the apparatus, which are not known.
However, by using values for these dimensions estimated from the figure
of the apparatus shown in the BH report, he found an expected net
signal from all effects of ∼ 2 × 10−13.

3.4 Comparison to Selleri

As noted in Section 2.4.7, the Selleri theory, like the NTO approach, is
based on what this author considers a physically defensible simultaneity
scheme. The Selleri theory, on the other hand, predicts a null signal for
the BH experiment.

It would be interesting to compare predictions of the Selleri theory to
results of other tests such as Mössbauer.

3.5 GPS and Sagnac

I do not profess expertise in the GPS system, though I have noted
earlier the remarks by Ashby, who does have extensive expertise. Those
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remarks appear consonant with NTO analysis and its requisite non-
Einstein synchronization and local light speed anisotropy.

Furthermore, in the context of the thought experiment of Section
1.6.1, the traditional approach seems incapable of deriving the Sagnac
effect from within the rotating frame. That is, considering the local
physical speed of light to be isotropic does not seem sufficient to derive
different arrival times for the cw and ccw light rays. This is not the case
for the NTO approach, and in this context, the Sagnac experiment may
be considered empirical support for it.

3.6 Future Experiments

Tobar[55][56] (WSMR in Table 1) expects to complete a modified
version of the Michelson-Morley experiment, accurate to several orders
of magnitude beyond that of BH, by the end of 2004. He will use a
whispering spherical mode resonator and rotate it with respect to the
lab. Preliminary analysis by the present author suggests that the WSMR
experiment may be capable of detecting an NTO effect on light speed,
if it exists, due to the surface speed of the earth.

3.7 Summary of Part 3

Only one non GPS/Sagnac experiment appears capable of distinguish-
ing between the traditional and NTO approaches to relativistic rotation,
that of Brillet and Hall. That test, sensitive to 10−15, found a signal at
∼ 1.9 × 10−13, which is strikingly close to the signal predicted by the
NTO approach from the earth surface speed about its axis of rotation,
and which is not predicted by the traditional approach.

Table 1. History of SRT Experiments

Symbol
Test Description Authors (Year) NTO Effect Trad NTO

MM

Original Michelson-
Morley experiment

Michelson & Mor-
ley[57] (1887)

Accuracy too low.
∼7-10 km/sec.

Y Y

WW

Electric field effect of
rotating magnetic in-
sulator in magnetic
field

Wilson and Wil-
son[58] (1913);
Hertzberg et al
[59] (2001)

NTO prediction =
Trad[60]

Y Y
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Post
MM

Repeats of MM inter-
ferometer tests

Kennedy (1926);
Piccard & Stahel
(1926-8); Michel-
son et al ((1929)

Null results: 1
km/sec to 7
km/sec accuracy Y Y

Joos

Version of MM Joos[61] (1930) Accuracy too low.
∼1.5 km/sec.

Y Y

KT

Original experiment
on time dilation

Kennedy and
Thorndike
[62](1932)

Not rotated. Low
accuracy ∼10
km/sec Y Y

Ives-
Stilwell

Doppler frequency
time dilation in H
canal rays

Ives and Stilwell
[63](1938, 1941)

Accuracy 100X
too low for NTO
effect[64] Y Y

PartAcc

Particle accelerator
time dilation on half
lives

Mid 1900s to
present

NTO prediction =
Trad

Y Y

ODM

Two opposite di-
rection NH3 maser
beams. Ether wind
Doppler variation as
rotate.

Cedarholm et al
[65] (1958)

Rotated 180o,
∼1.5 km/sec vari-
ation. Attributed
to earth mag field.

? Y

Hughes-
Drever

Isotropy of nuclear
energy levels. Doppler
shift of photons emit-
ted by 2 different
atoms.

Hughes et al[66]
and Drever (1960)

Significant anal-
ysis needed for
NTO prediction. Y ?

PDM

Perpendicular direc-
tion He-Ne masers.
Rotated.

Jaseva, Townes et
al[67] (1964)

Accuracy too low.
Systematic signal
as rotated. ? Y

Möss-
bauer

Mössbauer rotor.
Classical frequency
shift different from
SRT

Champeney et
al[68] (1963);
Turner and Hill
[69] (1964)

NTO predicts
same frequency
change as Trad Y Y
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HK

Time dilation on
atomic clocks flown
around world

Hafele and Keat-
ing[70] (1972)

NTO prediction =
Trad

Y Y

BH

Fringe shift in interfer-
ometer as rotate

Brillet and Hall
[35] (1978)

2nd order effect at
10−13. NTO pre-
dicts[47] N Y

GPA

Gravity probe A.
Maser on rocket and
maser on ground.
Classical Doppler
varies from SRT.

Vessot and Levine
[71] (1979), Vessot
et al[72] (1980)

NTO shift =
Trad. Analysis
done in non-
rotating earth
centered frame.

Y Y

Refract

Light split in air and
glass. 1st order fringe
effect in Galilean &
Fresnel ether drag the-
ories.

Byl et al[73]
(1985)

1st order effect
NTO = Trad
6= Galilean or
Fresnel drag.[74]

Y Y

NBS

Isotropy of nuclear en-
ergy levels. Doppler
shift. Rotation of
earth changed orienta-
tion.

Prestage[75] et al
(1985) at National
Bureau Standards

Apparatus not ro-
tated. NTO effect
= Trad Y Y

TPA

2 photon absorption in
atomic beam. Doppler
shift opposite direc-
tions affected by ether
wind.

Kaivola et al[76]
(1985); Riis et al
[77] (1988)

Apparatus not
rotated. Beam
aligned N-S[78].
NTO effect =
Trad

Y Y

UWash

Isotropy of nuclear en-
ergy levels. Doppler
shift. Rotation of
earth changed orienta-
tion.

Lamoreaux et
al[79] at Univ
Washington
(1986)

Apparatus not ro-
tated. NTO effect
= Trad Y Y

JPL

Jet Propulsion Lab.
2 earth fixed masers.
Fiberoptic compari-
son.

Krisher et al[80]
(1990)

Apparatus not ro-
tated. NTO effect
= Trad Y Y

LFV

Laser frequency varia-
tion as earth rotates:
stabilized laser com-
pared to stable cavity
locked laser.

Hils and Hall[81]
(1990)

Apparatus not ro-
tated, plus accu-
racy too low for
NTO effect.

Y Y
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Sat

GPS satellite test of
SRT.

Wolf and Petit[82]
(1997)

Analysis done
in non-rotating
earth centered
frame. NTO
effect = Trad.

Y Y

CORE

Cryogenic Optical
Resonators measure
anisotropy of light
speed as earth rotates.

Braxmaier et al
[83] (2002)

Apparatus not ro-
tated. NTO effect
= Trad. Y Y

WSMR

Whispering spheri-
cal mode resonator
Michelson-Morley
experiment.

Tobar[55][56]
(2004)

Appears capable
of discerning be-
tween NTO and
Trad

TBD TBD

Appendix. Deriving Sagnac Result from the Lab
Frame

Consider Figure 1 of section 1.6.1 with time (T > 0) in the right side
of the figure when the cw light pulse reaches the disk observer designated
as T1. Consider the time when the ccw pulse reaches the disk observer
(not shown) as T2. Then lengths traveled as seen from the lab by the ccw
light pulse and the observer at T1 must sum to equal the circumference,
i.e.

cT1 + ωRT1 = 2πR → T1 =
2πR

c + ωR
. (1.25)

Similarly, at time T2

cT2 = ωRT2 + 2πR → T2 =
2πR

c − ωR
. (1.26)

Hence, the arrival time difference in the lab is

∆T = T2 − T1 =
2ωR

c2

2πR

(1 − ω2R2/c2)
=

4ωA

c2(1 − ω2R2/c2)
. (1.27)

As is well known, the standard (physical) clocks on the disk rim run
more slowly than the lab clocks by

√

1 − ω2R2/c2, so the observer on
the disk must measure an arrival time difference of

∆tphys =
4ωA

c2
√

1 − ω2R2/c2
. (1.28)
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