CLINICAL ARTICLE

Bilateral uterine artery ligation plus B-Lynch procedure for atonic postpartum hemorrhage with placenta accreta

Ahmed Y. Shahin a, *, Tarek A. Farghaly a, Safwat A. Mohamed a, Mahmoud Shokry a,b, Diaa-Eldeen M. Abd-El-Aal a, Mohammed A. Youssef a

a Department of Obstetrics and Gynecology, Women’s Health Centre, Assiut University, Egypt

b Department of Obstetrics and Gynecology, Saudi-German Hospital, Abha, Saudi Arabia

ABSTRACT

Objective: To assess the effectiveness of bilateral uterine artery ligation followed by B-Lynch compression suturing in women with atonic postpartum hemorrhage and placental site bleeding due to adherent placenta accreta. Method: This protocol was followed in 26 women undergoing cesarean delivery for placenta accreta. Results: Two women died from disseminated intravascular coagulopathy. In the remaining 24 women, placental remnants completely disappeared within 8 months and ovulation resumed after a mean±SD of 51.6±3.2 days. Moreover, 18 women (75%) became pregnant within 12 months. Conclusion: Atonic postpartum hemorrhage and placental site bleeding due to adherent placenta accreta can be safely controlled by bilateral uterine artery ligation followed by B-Lynch compression suturing in women who desire to remain fertile.

1. Introduction

Recent reports have suggested that placenta increta occurs because a dehiscent scar allows chorionic villi to penetrate so deeply into the uterine wall that the trophoblast enters the myometrium [1]. The process is categorized as accreta, increta, and percreta according to the level of penetration (in the latter case, placental villous tissue has come through the uterine wall) [2]. During the third stage of labor, the absence of decidua prevents the noncontracting placenta from being separated from the contracting myometrium, causing the adherent placenta to bleed and often necessitating a hysterectomy [1].

Placenta previa, multiparity, advanced maternal age, previous cervical dilation and curettage, and the increasing numbers of cesarean deliveries worldwide are all known to be closely associated with placenta accreta [2,3]. In women who do not wish to have more children, hysterectomy with the placenta left in situ is the safest and therefore the preferred treatment [4]. When the woman wishes to preserve her fertility, however, attempts can be made to control a potentially life-threatening postpartum hemorrhage due to placenta accreta and/or an atomic uterus. In the latter case, leaving the adherent placenta (or adherent portions of the placenta) in situ at the time of the cesarean delivery lowers the risk of hysterectomy from 85% to 15% [4–8] and lessens the need for a blood transfusion should a hysterectomy become necessary [5]. Studies offer a wide range of techniques to perform arterial occlusion and/or uterine compression sutures for the management of uterine bleeding due to placenta accreta [6,9–11].

Uterine compression sutures have proved to be valuable in the control of massive atonic postpartum hemorrhage as an alternative to hysterectomy. B-Lynch [12], Hayman [13], and Cho [14] developed the most famous techniques combining bilateral uterine artery ligation (UAL) and uterine compression by suturing the anterior and posterior uterine walls together [15]. With only 7 reported failures, which all involved morbid placental adherence or disseminated intravascular coagulopathy, the efficacy of the B-Lynch technique is high [16,17].

Bilateral UAL is the first step of a stepwise uterine devascularization approach that affords good control of postpartum hemorrhage [18,19]. Studies on heavy menstrual bleeding have suggested that the decrease in bleeding following UAL was due to a decrease in blood perfusion (measured as a decrease in blood volume) [20,21]. Performed with or without utero-ovarian ligament ligation, UAL does not appear to affect future fertility or obstetric outcomes [18,22]. Vascular occlusion is only temporary, as recanalization soon ensures normal uterine circulation [18].

The aim of the present study was to evaluate the effectiveness of bilateral UAL followed by B-Lynch compression suturing in controlling atomic postpartum hemorrhage in women in whom complete removal of a placenta accreta was not possible.

2. Patients and methods

This prospective study was approved by the review board of the Department of Obstetrics and Gynecology, Women’s Health Centre,

* Corresponding author. Department of Obstetrics and Gynecology, Assiut University, 71116, Assiut, Egypt. Tel.: +20 100024322; fax: +49 1212532706248.
E-mail address: Ahmed.Shahin@web.de (A.Y. Shahin).

© 2009 International Federation of Gynecology and Obstetrics. Published by Elsevier Ireland Ltd. All rights reserved.
The participants provided written informed consent to undergo any procedure deemed necessary, including bilateral UAL followed by the B-Lynch procedure, as an attempt to avoid emergency hysterectomy should they experience postpartum hemorrhage. They also provided written informed consent to undergo hysterectomy if all measures attempted to preserve the uterus failed.

All cesarean deliveries were performed by the first author assisted by the second author. A dose of 1 g of first-generation cephalosporin (Cefazolin; Bristol Mayers Squibb, Cairo, Egypt) was administered intravenously 20 minutes prior to skin incision. The surgery was done under general anesthesia, which was delivered by one of 4 anesthesiologists, each of whom had acquired a wide experience of obstetric anesthesia from at least 400 interventions over a minimum of 2 years. General anesthesia was obtained using a modified rapid sequence induction, i.e., the administration of 4 to 6 mg/kg of thiopentone, followed by 1 to 1.5 mg/kg of suxamethonium, followed by endotracheal intubation. A urethral catheter was inserted after anesthesia was obtained. The skin was incised in the midline and the subcutaneous tissues were opened by blunt dissection. The anterior rectus sheath was opened by sharp dissection. After dissecting fascia from rectus muscles, the muscles were separated using the no-cutting technique. After the parietal peritoneum was opened by sharp dissection and blunt expansion, high above the bladder, a bladder flap was made and the bladder was retracted (an assistant held the retractor). A small median transverse hysterotomy incision was done in the lower uterine segment using a scalpel. It was expanded on both sides using scissors, stopping shortly before the uterine arteries. After delivery of the fetus, active delivery of the placenta was attempted by searching manually for a plane of cleavage between the placenta and the uterus. In patients in whom no plane of cleavage could be identified, or in whom adherent parts could not be removed, the study protocol was initiated. This protocol comprised 2 steps, bilateral UAL and B-Lynch compression suturing.

The technique used for bilateral UAL was the following: The peritoneum over the vesicouterine pouch already being incised horizontally, the peritoneum over the uterine isthmus and cervix was bluntly dissected downwards, and this dissection was then extended laterally. To avoid including the ureter in the ligation of the ascending branch of the uterine artery, the peritoneum was carefully mobilized at the uterine angles to expose both. The uterus was then retracted upwards and laterally by the assistant. The uterine artery pulsations were palpated digitally at the level of the internal os. A 1.0 chronic catgut suture attached to a round-bodied needle was passed posteriorly to anteriorly through the cervical tissues and the ligature consisted of a simple stitch. A second stitch was done below the first, at a distance no greater than 1 cm.

After the B-Lynch compressing sutures were performed as described by B-Lynch et al. [12], a double-layer closure of the hysterotomy was done without exteriorization by the continuous, nonlocking technique. The visceral peritoneum was left open but the parietal peritoneum was closed by the same technique using delayed-absorbable material. No approximation of the rectus muscles was done. Closure of the subcutaneous tissue was done by the interrupted-sutures technique, and closure of the skin by the same technique using absorbable sutures.

Because obstetric hemorrhage is an emergency, blood samples were only drawn for hemoglobin concentration, cross matching, and blood gas analysis. Following delivery, a complete blood count and another blood gas analysis were done, and liver and renal functions were checked.

Before discharge, the patients were prescribed antibiotics for 3 weeks. After discharge, they were followed up for bleeding and infection. Ovarian function and placental resorption were monitored by transvaginal ultrasound using the Sonoline G60-S imaging system (Siemens, Erlangen, Germany). The scans were done at monthly postpartum visits, which began within the first week postpartum, as soon as the patient’s condition allowed. The volume of any adherent placental remnant was calculated during the first scan, and these values, in cubic millimeters, served as baseline values. At each visit, the patients were also checked for puerperal fever or sepsis and questioned about passage of tissues through the vagina, irregular bleeding, and resumption of menstruation. Pregnancies were recorded.

3. Results

The patients’ exclusion, inclusion, and outcomes are shown in Fig. 1. All had undergone 1 previous cesarean delivery, all had antepartum...
hemorrhage, and all had placenta previa implanted on the uterine scar, which was diagnosed preoperatively by ultrasound or discovered intraoperatively. All underwent an emergency cesarean delivery under general anesthesia. No postpartum hemorrhage occurred in the 17 patients in whom the placenta was easily removed, and hysterectomy was performed in 8 patients who arrived at the emergency department in a state of shock due to massive blood loss. The remaining 26 patients had atomic postpartum hemorrhage and were also bleeding from adherent placental remnants after piecemeal removal of the placenta. These patients underwent the first step of the protocol. As bleeding from the placental site did not stop following bilateral UAL, they all underwent the B-Lynch procedure. The 2 patients who also needed ligation of the internal iliac (or hypogastric) artery were then transferred to the intensive care unit, where they died 34 hours later from disseminated intravascular coagulopathy.

Age ranged from 29 to 38 years (mean ± SD, 32.4 ± 3.6 years); body mass index (calculated as weight in kilograms divided by height in meters squared) from 28.5 to 30.3 (mean, 28.6 ± 1.4); parity from 0 to 5 (mean, 2.5 ± 1.9); and number of 500-mL units of fresh blood transfused intraoperatively or postoperatively from 1 to 4 units (mean, 2.8 ± 1.2). The mean hemoglobin concentration was significantly higher postoperatively (10.1 ± 8.6 mg/dL vs 7.6 ± 0.9 mg/dL; P < 0.001 by the χ² test) (Table 1).

The outcomes for the 24 surviving patients are outlined in Table 2. There were no cases of puerperal sepsis. Genital tract infection was the passage of necrotic tissue through the vagina, and only in the first 2 weeks. Menstruation resumed within 3 months in 20 patients (83.3%), and none experienced irregular bleeding. Ovulation resumed in all 24 patients within a mean of 45.6 ± 5.2 days, as evidenced on transvaginal ultrasound. The placental remnants measured a mean of 8.7 ± 3.6 mm³ on the first scan. Within the first 6 months, some still appeared as echo-dense shadows near the uterine fundus on ultrasound, but they had completely disappeared at 8 months. The mean time to sonographic evidence of complete absence of placental tissue was 170.7 ± 54.7 days.

After 1 year, 18 (75%) of the 24 patients became pregnant, as evidenced by the presence of fetal heart beat on ultrasound. Of the 6 patients who did not become pregnant, 4 were receiving injectable contraceptives offered by a private clinic. The other 2, who had galactorrhea, had already been diagnosed as having hyperprolactinemia at an infertility clinic.

4. Discussion

We assessed the effectiveness of bilateral UAL followed by B-Lynch compression suturing to control bleeding and postpartum infection—and allow for the restoration of ovulation and fertility—in women with atomic postpartum hemorrhage who are also bleeding from adherent placental remnants. Morbid placental adherence or disseminated intravascular coagulopathy are the only causes proposed for the failure of the B-Lynch procedure[16,17], and the 2 patients who died in our study had disseminated intravascular coagulopathy. Our protocol seems promising as none of the other patients needed a hysterectomy, and the rates of ovulation and fertility restoration were good.

Uterine compression sutures function in a manner similar to manual compression[23], and there are no theoretical or technical explanations regarding the failure of these approaches in women with placental remnants. This may point to a need for an additional technical step to control placental site bleeding in these women. Successful arterial occlusion for the management of bleeding associated with an incompletely delivered placenta accreta include hypogastric artery balloon occlusion[9] or ligation[6], bilateral ligation of the hypogastric arteries, Tsurulnikov arterial ligation[11], or uterine artery embolization[10]. Cho et al.[14] described sequential deep circular compression sutures on the serosal uterine surface to control bleeding from the placental site during cesarean delivery in women with placenta previa accreta. Verspyck et al.[24] reported the successful bilateral surgical devascularization of the uterus and ovary, a procedure that allowed 5 of 6 women with placenta accreta to keep their uterus. We successfully performed bilateral UAL, which is one step of stepwise uterine devascularization process.

The technique decreases blood perfusion through a temporary vascular occlusion[18,20,21]. This effect may combine with that of a B-Lynch compression suture, which probably also decreases blood flow. As recanalization occurs and normal uterine circulation resumes[18], no interference with future reproductive performance is expected. Ovulation and fertility were restored within 12 months in most of our patients.

Sentilhes et al.[25] were the first to report on a woman who underwent stepwise uterine devascularization and B-Lynch compression suturing, became pregnant again, and showed no marks of the B-Lynch procedure on cesarean delivery. Verspyck et al.[24] reported on the recurrence of placenta accreta and placental retention following both conservative treatment and surgical uterine and ovarian devascularization.

The main limitation of our study is its small sample size. Studies with larger samples are needed before we can recommend the protocol we followed as standard management of cases similar to those we treated. Because the situation of women with remnants of placenta accreta and postpartum hemorrhage is critical, conducting studies with randomized designs would be difficult. Studies comparing the arterial ligation technique we used with other techniques, including stepwise devascularization, are possible, however, and needed.

We conclude that, in women who desire to preserve their fertility, bilateral UAL followed by B-Lynch compression suturing represent an effective and safe combination for controlling atomic postpartum hemorrhage and bleeding due to adherent placental remnants. Although we found that our protocol did not impair fertility, this needs further assessment in studies with larger population samples.

Table 1

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, y</td>
<td>32.4 ± 3.6 (29–38)</td>
</tr>
<tr>
<td>BMI</td>
<td>28.6 ± 1.4 (28.5–30.3)</td>
</tr>
<tr>
<td>Parity</td>
<td>2.5 ± 1.9 (0–5)</td>
</tr>
<tr>
<td>Gestational age, wk</td>
<td>36.3 ± 1.8 (34.1–39.0)</td>
</tr>
<tr>
<td>No. of units of fresh blood transfused</td>
<td>2.8 ± 1.2 (1–4)</td>
</tr>
<tr>
<td>Hemoglobin concentration, mg/dL</td>
<td>7.6 ± 0.9</td>
</tr>
<tr>
<td>Preoperatively</td>
<td>10 ± 0.6</td>
</tr>
<tr>
<td>Postoperatively</td>
<td></td>
</tr>
</tbody>
</table>

Abbreviation: BMI, body mass index (calculated as weight in kilograms divided by height in meters squared).

* Values are given as mean ± SD or mean ± SD (range).

Table 2

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Postpartum fever</td>
<td>6 (25.0)</td>
</tr>
<tr>
<td>Time to first menstruation postpartum, d</td>
<td>37.5 ± 2.3</td>
</tr>
<tr>
<td>Regular menstruation within the first 3 months postpartum</td>
<td>20 (83.3)</td>
</tr>
<tr>
<td>Time to ovulation, d</td>
<td>51.6 ± 3.2</td>
</tr>
<tr>
<td>Evidence of ovulation on transvaginal ultrasound</td>
<td>24 (100.0)</td>
</tr>
<tr>
<td>Irregular bleeding</td>
<td>0</td>
</tr>
<tr>
<td>No. of patients reporting passage of tissues through the vagina</td>
<td>6 (25.0)</td>
</tr>
<tr>
<td>Puerperal sepsis</td>
<td>0</td>
</tr>
<tr>
<td>Size of placental remnants, mm³</td>
<td>8.7 ± 3.6</td>
</tr>
<tr>
<td>Complete lysis of placental tissue 8 months postpartum</td>
<td>24 (100.0)</td>
</tr>
<tr>
<td>Pregnancy within 12 months</td>
<td>18 (75%)</td>
</tr>
<tr>
<td>No. of patients not pregnant within 12 months</td>
<td>6 (25.0)</td>
</tr>
<tr>
<td>Likely cause</td>
<td></td>
</tr>
<tr>
<td>Use of injectable contraceptives</td>
<td>4 (16.6)</td>
</tr>
<tr>
<td>Hyperprolactinemia</td>
<td>2 (8.3)</td>
</tr>
</tbody>
</table>

* Values are given as number of cases (percentage) or mean ± SD unless otherwise indicated.
Conflict of interest

The authors have no conflict of interest.

References