More than 50 years after its initial description, transient global amnesia (TGA) remains one of the most enigmatic syndromes in clinical neurology. Recent MRI data suggest that a transient perturbation of hippocampal function is the functional correlate of TGA because focal diffusion lesions can be selectively detected in the CA1 field of the hippocampal cornu ammonis. Although various factors, such as migraine, focal ischaemia, venous flow abnormalities, and epileptic phenomena, have been suggested to be involved in the pathophysiology of TGA, the factors triggering the emergence of these lesions are still elusive. Recent data suggest that the vulnerability of CA1 neurons to metabolic stress plays a pivotal part in the pathophysiological cascade, leading to an impairment of hippocampal function during TGA. In this Review, we discuss clinical aspects, new imaging findings, and recent clinical–epidemiological data with regard to the phenotype, functional anatomy, and putative cellular mechanisms of TGA.

Epidemiology

Most systematic epidemiological studies show that the incidence of TGA ranges between 3 and 8 per 100 000 people per year.8–12 75% of attacks occur in people aged between 50 and 70 years, and occurrence in patients younger than 40 years of age is rare. The rate of recurrence of a second or a third episode varies across studies; a recent thorough meta-analysis described the rate of annual recurrence to be between 6% and 10%.

The nature of precipitating events directly before a TGA has been widely studied. Events frequently described include sudden immersion in cold or hot water, physical exertion, emotional or psychological stress, pain, medical procedures, sexual intercourse, and Valsalva-associated manoeuvres.8,9,13–14 and such events have been observed in 50–90% of documented attacks (figure 1). Data from epidemiological studies suggest that certain personality traits might be relevant in the aetiology of TGA. In their large case series, Quinette and colleagues15 found an increased frequency of patients who had psychological or emotional instability. Pantoni and colleagues13,16 found a higher occurrence of a personal or family history of psychiatric disorders or phobic traits in comparison with patients who have had a transient ischaemic attack or healthy controls.17

Recent high-resolution imaging data suggest an involvement of memory circuits in the mesiotemporal region, as hyperintense MRI lesions can be detected in the hippocampal formation in TGA.7,15,17,19 An analysis of the functional anatomy of these lesions shows a selective distribution within the CA1 subfield of the hippocampal cornu ammonis.7,24 Further imaging findings have implicated cellular mechanisms in the development of these lesions, suggesting that the selective vulnerability of CA1 neurons to metabolic stress plays a crucial part in the pathophysiological cascade that leads to a transient perturbation of memory pathways in TGA.

Introduction

The syndrome of transient global amnesia (TGA) was described independently in two case series by Bender1 and by Guyotat and Courjon2 in 1956. However, in 1882 and 1909, Ribot3 and Benon4 had already described transient amnestic states suggestive of a TGA.5 In 1964, Fisher and Adams6 published a large case series and introduced the term as used today. Since then, the clinical characteristics of TGA have been well described, although the exact aetiology and pathophysiology of this disorder are still not completely understood.

TGA is defined by a sudden onset of an anterograde and retrograde amnesia that lasts up to 24 h. The clinical and neuropsychological aspects of this syndrome have been characterised in recent studies, and several aetiological factors, such as migraine-related mechanisms, focal ischaemia, venous flow abnormalities, and epileptic phenomena, have been suggested to be involved in the pathophysiology.4–11 Data from neuropsychological studies that characterise the memory impairment of patients with acute TGA show a profound reduction of anterograde and a milder reduction of retrograde episodic memory, including executive functions and recognition.12–14 Thus, given the memory impairment in TGA, an involvement of temporal lobe structures including the hippocampus has long been suggested.21

Although the core amnestic syndrome usually lasts substantially less than 24 h, mild subclinical neuropsychological deficits with concomitant vegetative symptoms can last for days after the episode.21,22,23 Some studies indicate that a subclinical impairment of memory functions might persist for months after the acute episode.12,24–26 A recent meta-analysis including 25 studies, however, could not find differences in the long-term cognitive performance between patients and healthy controls.7

Recent high-resolution imaging data suggest an involvement of memory circuits in the mesiotemporal region, as hyperintense MRI lesions can be detected in the hippocampal formation in TGA.7,20–26 An analysis of the functional anatomy of these lesions shows a selective

www.thelancet.com/neurology Vol 9 February 2010

Transient global amnesia: functional anatomy and clinical implications

Thorsten Bartsch, Günther Deuschl

Lancet Neurol 2010; 9: 205–14

Department of Neurology,
University Hospital Schleswig-Holstein, University of Kiel, Kiel, Germany
(T Bartsch MD, G Deuschl MD)
Correspondence to:
Thorsten Bartsch, Department of Neurology, University Hospital Schleswig-Holstein, Schittenhelmstrasse 10, 24105 Kiel, Germany
T.bartsch@neurologie.uni-kiel.de
Hierarchical cluster analysis of 63 patients with TGA into three different classes of patients according to their clinical and epidemiological characteristics (highlighted in orange, green, and blue). In men, the TGA episode occurred more frequently after a strenuous physical event, whereas, in women, TGA was more closely associated with emotional distress, such as arousal, stress, or anxiety. In patients younger than 56 years, TGA was associated with a past history of migraine (figure 2).31,37

Diagnosis criteria and differential diagnosis

The diagnosis of TGA is primarily a clinical one and can be made if the following diagnostic criteria by Caplan37 are fulfilled: (i) presence of an anterograde amnesia that is witnessed by an observer, (ii) no clouding of consciousness or loss of personal identity, (iii) cognitive impairment limited to amnesia, (iv) no focal neurological or epileptic signs, (v) no recent history of head trauma or seizures, and (vi) resolution of symptoms within 24 h (panel 1). A temporally graded retrograde amnesia is consistently present during the acute attack in patients with acute TGA, although this feature is not included in the present diagnostic criteria. Mild vegetative symptoms such as headache, nausea, and dizziness might be present during the acute phase. A further diagnostic assessment should be done if vascular risk factors are present, if no reliable witness account is available, or if the symptomatology is ambiguous. The diagnosis of TGA can be positively supported by MRI (figure 3).

There is a limited, but important, range of differential diagnoses that might clinically mimic a TGA (panel 2). A transient ischaemic attack in the vascular distribution of the posterior cerebral artery might show the clinical presentation of an amnestic syndrome.39 Similarly, an infarction in the territory of the anterior choroidal artery might result in amnestic deficits. The body of the hippocampus is mainly supplied by the posterior cerebral artery, which branches into the proximal posterior cerebral artery, the anterior, middle, and posterior hippocampal artery, and finally into the longitudinal terminal segments of the hippocampal arteries. The head of the hippocampus is supplied by the anterior choroidal artery branching from the internal carotid artery.39 Strategic insults in the medial thalamus in the supply territory of the thalamoperforate arteries can result in a diencephalic amnesia.38 If a stroke is suspected, particularly when additional focal neurological signs can be found, the patient should be evaluated for stroke risk factors and investigated with MRI and/or CT, and receive electrocardiography, blood test, ultrasound of the cranial vessels, and cardiac check-up. Patients with TGA should have an electroencephalogram (EEG) to rule out post-ictal disorders or non-convulsive status epilepticus. Temporal lobe or complex partial seizures might present as transient epileptic amnesia, particularly when repetitive and witnessed episodes of transient amnesia occur (panel 3).41 TGA is not associated with an altered consciousness, loss of personal identity, or stereotypical movements. EEG during acute TGA does not show abnormalities suggestive of epileptiform activity. Seizures in the course of hypoglycaemia or hypoglycaemia itself can result in an amnestic deficit and might be considered as a differential diagnosis if the patient is young and diabetic. A precipitating head trauma might result in post-traumatic amnesia, and an acute-onset or residual conditions of a herpetic or a limbic encephalitis might also present with an amnestic syndrome, although these are usually accompanied with confusion and focal neurological signs.

Intoxications with drugs that affects the CNS, such as hypnotics, benzodiazepines, opioids, or antidepressants, might be considered as they can mimic an acute amnestic syndrome, although patients typically show an altered state of consciousness with slowness, drowsiness, or sleepiness (panel 4). Obtaining a drug history is
mandator y in these patients. Psychiatric disorders can also be considered as a differential diagnosis, such as dissociative episodes, psychogenic fugues, or an acute episode of depression, including side-effects of psychiatric pharmacotherapy such as an anticholinergic or serotoninergic syndrome. Functional amnesias are mostly characterised by a prominent retrograde amnesia.

Pathophysiological mechanisms
Since its description, several pathophysiological mechanisms, such as migraine-related mechanisms, hypoxic–ischaemic events, venous flow abnormalities, psychological mechanisms, and epilepsy-related activity, have been suggested to be associated with the pathophysiology of TGA. As many patients report Valsalva-associated manoeuvres before the onset of TGA, recent studies have investigated the possibility of an increased venous pressure leading to a hippocampal venous congestion with subsequent ischaemia.

A high rate of retrograde flow patterns in the jugular vein during the Valsalva manoeuvre in combination with a high rate of insufficient jugular vein valves in patients with TGA was described compared with controls.

Chung and colleagues showed that, by use of time-of-flight MRI in ten patients with TGA, compression of the brachiocephalic vein leads to a retrograde intracranial venous flow in half the patients. The retrograde flow was found only in the left side. Akkawi and colleagues found a predominant right-sided internal jugular vein incompetence. Combining ultrasonography and magnetic resonance venography in patients with TGA with and without a preceding Valsalva manoeuvre, a correlation between intracranial venous drainage patterns and jugular valve insufficiency was not found, arguing against a direct association between jugular flow and TGA. Furthermore, it seems difficult to link the discrete and focal hippocampal lesions found in TGA with a global increase in intracranial venous pressure.

TGA-related mechanisms and stroke
Given the abrupt onset of TGA and imaging findings, stroke-like mechanisms in terms of a haemodynamic or thromboembolic aetiology have been suggested to be involved in the aetiology of TGA. However, data from several systematic case-control studies that compared patients with TGA and patients with transient ischaemic attacks did not find an association between the frequency of stroke risk factors and TGA, although an increased risk for TGA was associated with a history of migraine. Nevertheless, one meta-analysis confirmed that there is no association between vascular risk factors and TGA, including migraine. Compared with patients with a transient ischaemic attack, patients with TGA have a better prognosis with regard to further cerebrovascular events. Accordingly, further imaging assessments in patients with TGA do not show abnormalities in intracranial magnetic resonance angiography and in perfusion-weighted imaging during acute episodes, thus making the possibility of an arterial ischaemia less likely. However, a study that combined duplex sonography and MRI reported an increased intima-media thickness in the common carotid arteries and a high occurrence of carotid plaques in patients with TGA in whom hippocampal diffusion lesions could be found, suggesting a high prevalence of artherosclerosis in these patients. Enzinger and colleagues evaluated MRI correlates of cerebral small-vessel disease in patients with TGA with and without concomitant hippocampal lesions seen on diffusion-weighted imaging (DWI), but could not find an increased rate of microangiopathic white matter hyperintensities and lacunar lesions or an increased frequency of cerebrovascular risk factors. Furthermore, hippocampal infarcts caused by arterial ischaemia in the posterior cerebral artery show a different phenotype compared with arterial ischaemia in the anterior circulation.

Panel 1: Diagnostic criteria for transient global amnesia by Caplan and Hodges
- Presence of an anterograde amnesia, which is witnessed by an observer
- No clouding of consciousness or loss of personal identity
- Cognitive impairment limited to amnesia
- No focal neurological or epileptic signs
- No recent history of head trauma or seizures
- Resolution of symptoms within 24 h
- Mild vegetative symptoms (headache, nausea, dizziness) might be present during the acute phase

Panel 2: Considerations in the differential diagnosis of acute amnestic syndromes
- Ischaemia in the posterior cerebral circulation
- Intoxication, adverse drug side-effects
- Complex focal seizures, transient epileptic amnesia, post-ictal conditions
- Psychogenic fugue, dissociative disorders
- Post-traumatic amnesia
- Hypoglycaemia

Panel 3: Diagnostic criteria for transient epileptic amnesia
- History of recurrent witnessed episodes of transient amnesia
- Cognitive functions other than memory judged to be intact during typical episodes by a reliable witness
- Evidence for a diagnosis of epilepsy based on one or more of the following:
 - Epileptiform abnormalities on electroencephalography
 - The concurrent onset of other clinical features of epilepsy (eg, lip-smacking, olfactory hallucinations)
 - Clear response to anticonvulsant therapy
hippocampal lesions caused by TGA with regard to lesion size and distribution.

TGA and migraine-related mechanisms

Pathophysiological mechanisms linking migraine and migraine with aura with TGA have been widely discussed, as several studies have reported a higher incidence of a history of migraine in patients with TGA than in healthy controls. However, patients rarely had an active migraine in the months before TGA or migraineous features during the acute TGA, indicating that an acute TGA is not a reflection of an episode of acute migraine with or without aura. The occurrence of headaches during the acute TGA episode is not associated with a history of migraine. A study of 63 patients identified a past history of migraine as a risk factor in patients with TGA who were younger than 56 years of age.

A key pathophysiological mechanism in migraine is cortical spreading depression that mirrors a glutamate-mediated transient neuronal and glial depolarisation, which is followed by a long-lasting suppression of neuronal activity. Cortical spreading depression propagates across the cortex with a speed of 3–5 mm/min and is accompanied by a short-lasting hyperperfusion followed by a hypoperfusion. Experimental and clinical findings strongly suggest that cortical spreading depression is the neurophysiological correlate of migraine with aura. This event can also be elicited in the hippocampus, where it propagates across the cortical surface and modulates excitability of CA1 neurons and alters the distribution of excitatory transmitter receptors, including glutamate. Furthermore, cortical spreading depression is accompanied by a decrease in the apparent diffusion coefficient, indicating decreased cellular diffusion. Importantly, as seen in the rodent hippocampus, cortical spreading depression might lead to hypoxic states in the CA1 field with subsequent cellular damage to CA1 neurons.

Cortical spreading depression-related mechanisms in the hippocampus might thus affect CA1 neuronal function and impair structural integrity. In addition to the general vulnerability of CA1 neurons, these events might be a neurophysiological trigger that elicits cellular metabolic changes, resulting in TGA. However, compared with neocortical tissue, the threshold for...
eliciting a cortical spreading depression in the hippocampus is substantially higher and, during an acute TGA, patients do not typically show symptoms suggestive for acute migraine attack or migraine with aura. In human beings, a cortical spreading depression in the hippocampus has not yet been shown. Parenchymal diffusion changes in the neocortex during migraine with aura as visualised by MRI show a different temporal course and distribution than those seen with the hippocampal lesions found in TGA.75

Pathophysiological mechanisms of hippocampal dysfunction

The CA1 sector of the hippocampal cornu ammonis shows a selective vulnerability to metabolic and oxidative stress caused by hypoxaemia, β-amyloid-induced neurotoxicity, and ischaemia mediated by glutamate overload and calcium influx.72,73 The exact mechanisms underlying this region-specific vulnerability and glutamate toxicity, however, are not well understood, but could include genomic-determined differences in the tolerability to glutamate and distribution of glutamate receptors, as well as an increase in excitatory synaptic transmission.74,75 Several studies have described emotional, physical, and behavioural stress situations preceding the onset of TGA (figure 1).18,31,33,34,36,38,57 In this context, recent data from studies that investigated stress responses in the hippocampus of animals show that acute emotional and behavioural stress impairs long-term potentiation and enhances long-term depression in CA1 neurons, leading to a disruption of hippocampus-dependent memory.76 Acute stress might thus modulate CA1 synaptic mechanisms involved in learning and memory.75–78 The enhanced glutamatergic transmission and increased calcium influx in CA1 neurons in response to stress is mediated by increased levels of corticotropin-releasing hormone, neurosteroids, β-adrenoceptor agonists, and corticosterone acting via CA1 mineralocorticoid and glucocorticoid receptors.79 This potentiated calcium exposure might be a risk factor for CA1 neurons with regard to an increased metabolic vulnerability and thus potentially impairing their structural integrity.79 These mechanisms might also be involved in the pathophysiological cascade, and could selectively affect hippocampal CA1 neurons with a subsequent perturbation of memory pathways, which might result in acute TGA (figure 4). The particular susceptibility of the hippocampus with regard to behavioural stress might also have a role in memory deficits in disorders such as post-traumatic stress syndrome and depression. More data are needed to understand the pathophysiological role of the CA1 hippocampal involvement in patients with TGA, and the nature of the trigger eliciting the lesions.

Figure 4: Pathophysiological framework of TGA
Schematic model highlighting the cellular mechanisms and pathophysiological cascade in the CA1 field of the cornu ammonis involved in the emergence of hippocampal TGA lesions. This model does not account for the spectrum and nature of triggers in inducing the pathophysiological cascade. Please see text for details. MRS=magnetic resonance spectroscopy. TGA=transient global amnesia.
PET and SPECT

Quantitative imaging of changes of regional cerebral glucose, oxygen metabolism, or cerebrovascular blood flow in TGA have been studied by use of PET and single photon emission computed tomography (SPECT). In some studies, mesiotemporal flow changes have been described. However, most studies have also noted concomitant decreased or increased changes in cerebral blood flow in other anatomical structures, such as unilateral or bilateral thalamic, prefrontal, frontal, amygdaloid, striatal, cerebellar, occipital, precentral, and postcentral areas. In some studies, either no mesiotemporal changes, no cerebral changes, or a global hypoperfusion were detected. In summary, the imaging data derived from PET and SPECT studies are difficult to compare and interpret.

Most changes normalised on follow-up examination. The variabilities in PET and SPECT are probably associated with differences in the study designs, such as the imaging protocol and resolution, and the latency of scanning, frequently done days or weeks after the acute TGA and thus not covering the initial pathophysiological event. A correlation between SPECT and MRI in the time window of 24–73 h after onset has been found in a study including only six patients. In five patients, a predominant hypoperfusion in the cerebellar vermis was observed in combination with punctuate DWI lesions in the hippocampus, whereas in another patient a bilateral hypoperfusion in the temporal lobes was detected by use of SPECT. Functional MRI was used in two patients during an acute TGA to assess memory function and cerebral activation patterns. In both patients, there was reduced or no activation in temporal lobe structures during encoding of visual scenes or recognition of old scenes, thus reflecting the functional impairment of temporal lobe structures.

MRI

Use of structural imaging with MRI has detected abnormalities in memory-relevant structures of the mesiotemporal region. Early results have been inconsistent and controversial about the type and location of signal abnormalities described in some patients. Recent data from studies that used high-resolution MRI have shown that focal hyperintense lesions correlating to restricted diffusion in the lateral hippocampus can now be reliably detected (figure 3 and figure 5). The detection rate of these lesions can be improved by up to 85% with optimised MRI parameters and by acknowledging the time course of the lesion (panel 5).

A detailed analysis of the location of hippocampal lesion shows that almost all lesions can be selectively found in the area corresponding to the CA1 sector (Sommer sector) of the hippocampal cornu ammonis as described by Lorento de No. Distribution of diffusion-weighted imaging/T2 lesions within the cornu ammonis: the lesions are confined to the CA1 subfield (reprinted from Bartsch and colleagues, with permission from Oxford University Press.)
perforant pathways and via Schaffer collaterals from CA3 postrhinal and medial entorhinal cortex (layer III) via the receive information input from the parahippocampal network level, CA1 neurons of the cornu ammonis polysynaptic intrahippocampal circuits. On a cellular consolidation, constituting a relay function in direct and neurons are crucially involved in the process of memory and experimental data show that hippocampal CA1 hippocampal or mesiotemporal memory circuits. Clinical of TGA strongly suggests a transient perturbation of status in the hippocampus.

focal and not suggestive of a globally altered metabolic neurons that indicate metabolic stress are indeed highly tissue, suggesting that the metabolic changes in CA1 lesions, a different aetiology leading to the amnestic syndrome cannot be ruled out. Impairments in diffusion indicate cytotoxic oedema in affected tissue, and these impairments can be observed in other disorders such as encephalitis, multiple sclerosis, and epilepsy and thus are not specific for ischaemic events. Although the course of diffusion changes in TGA does mimic the temporal evolution of ischaemic lesions, structural sequelae in CA1 detectable with high-resolution MRI have not been observed so far (figure 3). A recent retrospective, post-hoc study that used structural MRI reported an increased prevalence of hippocampal cavities corresponding to the vestigial hippocampal sulcus in patients with TGA compared with controls. This higher load of pre-existing cavities might further contribute to the vulnerability of hippocampal CA1 neurons to metabolic or vascular stress.

In addition to DWI, which provides information about the structural integrity of brain tissue, magnetic resonance spectroscopy enables assessment of in vivo metabolic changes of cerebral structures. Complementary imaging studies combining MRI and focal magnetic resonance spectroscopy of CA1 DWI/T2 lesions revealed a distinct lactate peak. As a marker of anaerobic glycolysis, lactate thus indicates acute metabolic stress of CA1 neurons in TGA. The lactate peak was confined to the DWI lesion and could not be detected in peri-focal tissue, suggesting that the metabolic changes in CA1 neurons that indicate metabolic stress are indeed highly focal and not suggestive of a globally altered metabolic status in the hippocampus.

The evolution of hippocampal CA1 lesions in the course of TGA strongly suggests a transient perturbation of hippocampal or mesiotemporal memory circuits. Clinical and experimental data show that hippocampal CA1 neurons are crucially involved in the process of memory consolidation, constituting a relay function in direct and polysynaptic intrahippocampal circuits. On a cellular network level, CA1 neurons of the cornu ammonis receive information input from the parahippocampal postrhinal and medial entorhinal cortex (layer III) via the perforant pathways and via Schaffer collaterals from CA3 neurons. Postsynaptic output from CA1 neurons projects via the subiculum to deep layers of the entorhinal cortex, so that lesions in CA1 affect the output relay function of the hippocampus.

Conclusions and clinical implications
Recent neuroimaging findings suggest that a transient perturbation of hippocampal function is the correlate of TGA, as focal lesions can be reliably detected in the CA1 field of the cornu ammonis by use of DWI. The maximum level of detection of these lesions is 24–72 h after onset of symptoms. Although the diagnosis of TGA is primarily a clinical one, neuroimaging in TGA can positively support the diagnosis. Further investigations, including imaging, can be recommended if cerebrovascular risk factors are present, the patient is younger than 50 years, or the symptomatology is ambiguous. If a patient has repetitive amnestic episodes, EEG is mandatory to exclude a transient epileptic amnesia. Epidemiological data suggest that the recurrence rate of TGA is low, but a few patients could have a second episode. To date, data from MRI has not found evidence for structural sequelae of these hippocampal lesions, and recent neuropsychological findings have also not found evidence for clinically relevant chronic neuropsychological deficits. Neuroimaging data suggest that the vulnerability of hippocampal CA1 neurons has a pivotal role in the pathophysiological cascade leading

Search strategy and selection criteria
References for this Review were identified through searches of PubMed with the search terms “amnesia”, “transient global amnesia”, “TGA”, “hippocampus”, and “CA1” between January, 1990, and August, 2009. Only papers published in English were reviewed. The references from identified papers and the authors’ own files were also searched for relevant publications. The final reference list was chosen on the basis of relevance to the topics covered in this Review (eg, their originality, contribution to hippocampal and TGA anatomy and physiology, pathophysiology, diagnosis or treatment).
to an impairment of hippocampal function during TGA.

Future research should focus on elucidating pathophysiological correlates of the acute phase, particularly on deciphering which trigger induces the pathophysiological cascade that affects CA1 neurons. TGA could be used in future neuropsychological studies as a natural lesion model of a perturbation of hippocampal CA1 neurons. Understanding the pathophysiological mechanisms in TGA could facilitate insights in other neurological disorders that affect the hippocampus, such as stroke, encephalitis, and Alzheimer’s disease.

References

