The impact of fluid therapy on microcirculation and tissue oxygenation in hypovolemic patients: a review

Abstract Purpose: An optimal volume replacement strategy aims to restore systemic hemodynamics with the ultimate goals of improving organ perfusion and microcirculation for sustaining adequate tissue oxygenation. This review presents the (patho)physiological basis of hypovolemia, microcirculation, and tissue oxygenation and presents a literature review on the effects of plasma substitutes on microperfusion and oxygenation in the clinical setting.

Methods: Literature review of the effects of fluid therapy on microcirculation and tissue oxygenation using PubMed search including original papers in English from 1988 to 2009.

Results: We identified a total of 14 articles dealing with the effects of different crystalloids and colloids on organ perfusion, microcirculation, and tissue oxygenation in patients. The results are divergent, but there is a general trend that colloids are superior to crystalloids in improving organ perfusion, microcirculation, and tissue oxygenation. Due to the limited number of studies and different study conditions, a meta-analysis on the effects of the volume replacement strategies on microcirculation is not possible.

Conclusions: Improving the microcirculation by volume replacement appears to be a promising issue when treating the critically ill. The growing insights from animal experiments have to be translated into the clinical setting to identify the optimal fluid regimen for correcting hypovolemia. New techniques for monitoring microcirculation at the bedside might provide such endpoints, although these have to be validated also in the clinical setting. Whether improved microperfusion and tissue oxygenation by fluid therapy will also improve patient outcomes will have to be proven by future studies.

Keywords Volume replacement · Crystalloids · Albumin · Gelatins · Hydroxyethyl starch · Microcirculation · Tissue oxygenation · Patients

Introduction

Circulating volume and microcirculatory deficits may occur in the surgical, trauma, burn, and intensive care patient. While bleeding causes absolute volume deficits, vasodilation mediated by vasoactive substances produces relative volume deficits. Hypovolemia may also develop in the absence of obvious fluid loss secondary to generalized impairment of the endothelial barrier caused by inflammation resulting in capillary leakage and fluid shift from the intravascular to the interstitial space. Restoration of intravascular volume can be regarded as a cornerstone of therapy in the critically ill. Diagnosis, choice of fluids, and identification of hemodynamic targets, however,
Hypovolemic shock as a result of decreased circulating volume from, for example, hemorrhage. Obstructive shock as result of an obstruction in the cardiovascular circuit as a result of, for example, massive pulmonary embolism, tension pneumothorax, or pericardial tamponade. Distributive shock where vascular distribution of a normal or even of a supranormal cardiac output resulting in inadequate regional oxygen delivery. Hypovolemia induced by distributive shock is highly heterogeneous and targets the microcirculation. Its detection by measuring systemic hemodynamics is complicated by shunting of the microcirculation resulting in microcirculatory alterations and hypoxia with normal systemic hemodynamics and oxygen-derived variables [9]. Distributive shock especially occurs under conditions of inflammation and infection such as in sepsis and reperfusion injury. Inflammatory mediators and hypoxemia result in abnormal blood flow distributions and shunting leading to a mismatch between oxygen delivery and oxygen need by the parenchymal cells, and thus heterogeneous hypoxemia, and organ dysfunction [9, 10].

Distributive shock provides the biggest challenge with regard to identifying endpoints for assessing an adequate fluid replacement [11]. Currently these endpoints are aimed at correcting changes in systemic hemodynamics. Fluid resuscitation can cause an apparent improvement in systemic circulation while leaving regional and microcirculatory oxygenation and perfusion underresuscitated. In animal investigations it has been shown that fluid resuscitation improved organ blood flow of the gut and kidneys, while leaving other areas hypoxemic [12]. This is important in the light of recent clinical studies using new techniques for monitoring microcirculation, which have shown the persistence of microcirculatory underresuscitation in the presence of normalized systemic hemodynamic variables and association with adverse clinical outcome [5, 13–15].

Adequate microcirculation relies on the function of the different components of the microcirculation. Red and white blood cells, endothelial cells, and smooth muscle cells have to function in close harmony to guarantee adequate microcirculatory blood flow to transport oxygen to the tissues. The function of each of these cellular and subcellular systems is affected by hypovolemia.

Pathophysiology of the hypovolemic microcirculation

Hypovolemia leads to inadequate perfusion of the microcirculation resulting in insufficient oxygen availability to meet the needs of mitochondrial oxidative phosphorylation [2, 7]. Weil and Shubin [8] in their keynote paper classified the different types of shock into four main categories: hypovolemic, cardiogenic, obstructive, and distributive shock (Fig. 1, 2). Hypovolemic shock can be described as the condition whereby there is a decrease in circulating volume. Cardiogenic shock occurs where there is a loss of cardiac contractility with elevation of diastolic filling pressure and volume. Obstructive shock can occur as a result of massive pulmonary embolism, tension pneumothorax, or pericardial tamponade where there is a physical obstruction in the circulation resulting in impaired diastolic filling and increased afterload. Distributive shock involves a defect in the (micro)vascular distribution of a normal or even of a supranormal cardiac output resulting in inadequate regional oxygen delivery. Hypovolemia induced by distributive shock is highly heterogeneous and targets the microcirculation. Its detection by measuring systemic hemodynamics is complicated by shunting of the microcirculation resulting in microcirculatory alterations and hypoxia with normal systemic hemodynamics and oxygen-derived variables [9]. Distributive shock especially occurs under conditions of inflammation and infection such as in sepsis and reperfusion injury. Inflammatory

Fig. 1 The classification of shock according to Weil and Shubin [8]. I Normal conditions. II Cardiogenic shock, related to cardiac pump failure resulting from loss of the pump function of the heart. III Hypovolemic shock as a result of decreased circulating volume from, for example, hemorrhage. IV Obstructive shock as result of an obstruction in the cardiovascular circuit as a result of, for example, massive pulmonary embolism, tension pneumothorax, or pericardial tamponade. V Distributive shock where vascular dysfunction is unable to distribute a normal or even high cardiac output, resulting in underperfused microcirculatory areas being shunted by well perfused areas.
Deleterious effects on the microcirculation include dysfunction of endothelial signal transducing pathways by inflammatory mediators and reactive oxygen species, deterioration of endothelial barrier function (e.g., glycocalyx), alterations in red blood cell function (deformability, aggregability), and increased leukocyte adhesion and activation [6, 9]. Any one of these alterations alone or acting together can lead to a loss of functional capillary density resulting in heterogeneous abnormalities in the distribution of blood to the microcirculatory network, enhanced oxygen diffusion distances from the perfused intracapillary lumens to the tissue cell, tissue hypoxemia, and finally organ dysfunction. Administration of fluids to correct hypovolemia may modulate microcirculatory function by various mechanisms. The most important is increasing flow by enhanced filling of the vasculature, thus generating forcing pressure promoting microcirculatory perfusion. Fluids also modify the hemorheology of blood by decreasing viscosity, which additionally promotes blood flow. There are different effects of fluids on blood viscosity depending on the composition of the fluid; the microcirculation can be either improved or impaired by these effects [16]. Excessive hemodilution can cause shunting of the microcirculation and impair regional tissue oxygenation [14]. This effect can differ among the different organ systems [12].

Acid-base balance has been shown to be influenced by the administration of fluids [17]. Alterations in acid-base status can cause deleterious effects on organ function (e.g., kidney function [18]). Saline solution appears to have the most negative effect on the (micro)circulation [19]. Infusion of large amounts of saline results in increased plasma chloride concentration and causes a reduction in the strong ion difference, which in turn produces an increase in free hydrogen ions [20]. This effect can be avoided when using more plasma-adapted (“balanced”) crystalloids [21].

Release of inflammatory mediators secondary to hypovolemia is another important factor contributing to microcirculatory dysfunction. The volume replacement strategy can modulate inflammatory activation, generation of reactive oxygen, and leukocyte adhesion to the microcirculatory endothelium [22]. Saline solution appears to be the most pro-inflammatory fluid, whereas certain colloids (especially when dissolved in a balanced solution) may be more beneficial in controlling the inflammatory process [23–25]. Studies using intravital microscopy have shown this to be the case by imaging the effects of different fluids on leukocyte adherence on organ microvascular surfaces [26, 27]. In this context colloids showed more beneficial effects on the microcirculation than saline resuscitation in a variety of experimental models using direct observation of leukocyte endothelial interaction [27, 28]. The use of crystalloids as volume replacement has been shown to impair microcirculation and to cause vascular leakage resulting in fluid shift to the interstitial space [29, 30]. The negative effects on oxygen transport pathways occur as a result of increased diffusion path length and poor oxygen solubility in aqueous solutions causing reduced oxygen availability and impaired cellular respiration.

The glycocalyx is a gel-like structure that forms the interface between the intracapillary lumen and the endothelial cells, and its integrity is highly sensitive to oxidative stress [31]. It is likely that endothelial dysfunction and microcirculatory deterioration resulting from hypovolemia and reperfusion injury are caused by a loss of the endothelial glycocalyx [32]. Depletion of this barrier results in leukocyte adhesions and loss of the endothelial barrier function [33, 34]. This in turn results in alterations of the Starling forces promoting tissue edema. The loss of this important supracelluar compartment of the microcirculation may form an important rationale for using colloids [32]. Of the colloids, starches have been shown to protect the glycocalyx barrier [35]. It is expected that modifications of the molecular and pharmacological properties of colloids as well as of the solvent may provide additional protection of the glycocalyx and thereby of the microcirculation.

How can the effects of volume replacement be monitored?

Currently, endpoints of volume replacement are aimed at correcting changes in systemic hemodynamic variables.
These include giving volume challenges either by administering a fluid bolus or by autotransfusion by passive leg raising resulting in changes in systemic hemodynamic variables such as stroke volume or venous pressure [11]. Fluid resuscitation can cause an apparent improvement in systemic circulation while leaving regional and microcirculatory oxygenation and perfusion uncorrected [12]. New techniques have been introduced at the bedside aimed at monitoring various aspects of the microcirculation and tissue oxygenation. These have been applied to various areas of the body, and various parameters related to microcirculatory function and tissue oxygenation have been measured. At present, no unifying monitoring technique exists that measures all aspects of microcirculatory function in an integrated fashion, and each technique has its limitations in this respect. It is worth noting that in fact all hemodynamic monitoring modalities suffer from this drawback and that no single technique can be used to measure the integrative function of the cardiovascular system to achieve hemodynamic homeostasis from lung to mitochondria. Thus each microcirculatory monitoring technique should be interpreted for its sensitivity and specificity in identifying a particular physiological component and its ability to predict impending adverse events. It has to be emphasized that these microcirculatory monitoring techniques are at an early stage of development and have to be validated for guiding volume therapy in the clinical setting. Currently used bedside monitoring techniques for assessing the influence of volume therapy on microcirculation are described below.

Laser Doppler flowmetry (LDF) is used for nonquantitative assessment of blood flow and has been applied mainly to the cutaneous microcirculation [36].

Tissue CO$_2$ can be measured using gastric CO$_2$ tonometers or by tissue CO$_2$ electrodes [37]. These measurements have been mostly applied either in the stomach or intestines or sublingually and are assumed to be a measure of the adequacy of microcirculatory perfusion [36–42]. In early studies such CO$_2$ measurements and arterial bicarbonate were entered into the Henderson-Hasselbalch equation to obtain intestinal mucosal pH (pHi). This calculation was later abandoned and instead tissue-to-arterial gradient (pCO$_2$ gap) was used.

A more direct method of evaluating microcirculatory perfusion is by direct imaging of the microcirculation using the recently introduced orthogonal polarizing spectrum (OPS) or sidestream dark field (SDF) imaging [43, 44]. These are optical techniques that are incorporated into hand-held microscopes for direct visual observation of the microcirculation on mucosal organ surfaces. In the perioperative setting these techniques have mainly been applied to study the sublingual microcirculation.

Tissue oxygenation has classically been measured by use of Clark electrodes [45] although more modern versions of such electrodes use solid state or oxygen-dependent fluorescence quenching methods. These electrodes are applied either trans- or subcutaneously, or as needles that can be inserted into muscle tissue.

An alternative method to gain information about microcirculatory oxygen availability is the use of the oxygen-dependent optical properties of microcirculatory Hb, which can be monitored using near infrared spectroscopy (NIRS) [46]. This technique has been applied in the thenar, calf, and forearm, and on the forehead.

A more comprehensive presentation of these techniques will be provided in another review paper to be published in *Intensive Care Medicine* as part of this current series dedicated to microcirculation.

Clinical studies on the effects of fluid therapy on microcirculation and tissue oxygenation

A PubMed analysis was carried out to investigate the literature on the effects of fluids on the microcirculation and tissue oxygenation in the clinical setting. We included all original studies published in English from 1988 to 2009 and only studies in patients (no volunteer studies) were included (Table 1). Keywords for the search included [microcirculation], [microperfusion] [tissue blood flow] [organ perfusion] [tissue oxygenation] in connection with [hypovolemia], [volume therapy/replacement], [fluid therapy/replacement], [crystalloids], [Ringer’s lactate], [saline solution], [normal saline], [human albumin], [gelatin(s)], [dextran(s)], [hydroxyethyl starch, HES], and [hypertonic solution]. Articles were only included when the methods for assessing organ perfusion, microcirculation, and tissue oxygenation were given. Obviously we may have missed several ongoing studies and indeed several are currently under review, but nevertheless we feel this overview gives a comprehensive review of the state of the current art.

Crystalloids

In two prospective, randomized studies in patients undergoing abdominal aortic and gynecologic surgery, the influence of Ringer’s lactate (RL) for intraoperative volume replacement on gastric mucosal perfusion was assessed by measuring gastric intramucosal pH (pHi) by tonometry [47, 48]. In one study, RL did not improve gastric mucosal perfusion [47], while in the other one RL also increased gastric mucosal perfusion, but not nearly as much as HES 200/0.5 did [48]. In patients undergoing major abdominal surgery, volume replacement using saline solution resulted in decreased skeletal muscle tissue pO_2 (ptiO$_2$), whereas ptiO$_2$ increased significantly in the patients given HES 130/0.4 in saline [49]. This difference
<table>
<thead>
<tr>
<th>Reference (year)</th>
<th>Patients</th>
<th>Design</th>
<th>Fluids</th>
<th>Model</th>
<th>Method</th>
<th>Main results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boldt [52] (1991)</td>
<td>Cardiac surgery</td>
<td>Pros rand</td>
<td>6% HES 200/0.5 vs. HHES vs. no fluids</td>
<td>To double reduction in PCWP</td>
<td>LDF skin</td>
<td>Both increased LDF; HHES showed significantly higher increase in LDF than HES 200/0.5</td>
</tr>
<tr>
<td>Mythen [53] (1995)</td>
<td>Cardiac surgery</td>
<td>Pros</td>
<td>HES 200/0.5 no control</td>
<td>To increase stroke volume</td>
<td>pH tonometry</td>
<td>HES significantly increased gastric mucosal perfusion</td>
</tr>
<tr>
<td>Boldt [51] (1996)</td>
<td>Trauma and sepsis ICU</td>
<td>Pros rand</td>
<td>10% HES 200 vs. 20% HA</td>
<td>Volume replacement on ICU</td>
<td>pH tonometry</td>
<td>Trauma patients: no differences in pH; septic patients: decrease in pH blunted only by HES, decrease in pH by HA</td>
</tr>
<tr>
<td>Marik [47] (1997)</td>
<td>Abdominal aortic surgery</td>
<td>Pros rand</td>
<td>RL vs. HES 450/0.7</td>
<td>Perioperative volume replacement</td>
<td>pH tonometry</td>
<td>Only HES improved microvascular blood flow, RL did not change pH; pHi remained unchanged with HES and slightly increased with gelatin (from 7.27 to 7.31)</td>
</tr>
<tr>
<td>Asfar [54] (2000)</td>
<td>Sepsis</td>
<td>Pros rand</td>
<td>HES 200/0.62 vs. gelatin</td>
<td>Hemodynamic stabilization</td>
<td>pH tonometry</td>
<td>Only HES improved microvascular blood flow, RL did not change pH; pHi remained unchanged with HES and slightly increased with gelatin (from 7.27 to 7.31)</td>
</tr>
<tr>
<td>Forrest [55] (2000)</td>
<td>Sepsis</td>
<td>Pros</td>
<td>10% HES 264/0.45</td>
<td>Keep PAOP >15 mmHg</td>
<td>pH tonometry</td>
<td>No correction of abnormal intramucosal pCO2 gap by HES</td>
</tr>
<tr>
<td>Lang [49] (2001)</td>
<td>Abdominal surgery</td>
<td>Pros rand</td>
<td>Saline vs. HES 130/0.4</td>
<td>Perioperative volume replacement (PCWP 12–16 mmHg)</td>
<td>Microsensory pO2 catheters</td>
<td>RL decreased (muscle) tissue oxygenation, whereas it was increased by use of HES 130/0.4</td>
</tr>
<tr>
<td>Wilkes [59] (2001)</td>
<td>Elective surgeries</td>
<td>Pros rand double-blinded</td>
<td>Balanced vs. unbalanced volume therapy HES + cryst</td>
<td>Hemodynamic stabilization (using algorithm)</td>
<td>Gastric pH tonometry</td>
<td>pHi lower with gelatin than with HES 200/0.62; HES reduced splanchnic perfusion significantly less than RL</td>
</tr>
<tr>
<td>Rittoo [56] (2002)</td>
<td>Abdominal aortic surgery</td>
<td>Pros rand</td>
<td>Gelatin vs. HES 200/0.62</td>
<td>Volume expansion</td>
<td>pH tonometry</td>
<td>pHi lower with gelatin than with HES 200/0.62; HES reduced splanchnic perfusion significantly less than RL</td>
</tr>
<tr>
<td>Guo [48] (2003)</td>
<td>Gynecology</td>
<td>Pros rand</td>
<td>RL vs. HES 200/0.5</td>
<td>Intraoperative volume replacement</td>
<td>pH tonometry</td>
<td>HES significantly improved splanchnic blood flow; RL was not as effective as HES</td>
</tr>
<tr>
<td>Arkilic [50] (2003)</td>
<td>Colon resection surgery</td>
<td>Pros rand</td>
<td>Crystalloids 8 vs. 16–18 mL kg h⁻¹</td>
<td>Perioperative fluid replacement</td>
<td>Polarographic subcutaneous tissue O2 tension</td>
<td>Both regimens increased tissue oxygenation; more fluids were better for improving tissue oxygenation; differences were not seen by systemic hemodynamic monitoring</td>
</tr>
</tbody>
</table>
was not identified by monitoring only systemic hemodynamics. Arkilic et al. [50] investigated the effects of “conservative” (2,183 ± 972 mL) versus “aggressive” (3,815 ± 1,853 mL) unspecified crystalloid resuscitation in elective colon resection surgery and measured subcutaneous oxygen tension using oxygen electrodes and capillary blood flow by a thermal diffusion system. They found that supplemental fluid administration increased both tissue oxygen tension and capillary blood flow showing the most increase with the higher doses of fluids. The difference between “conservative” and “aggressive” crystalloid resuscitation seen in the microcirculation was not identified by monitoring systemic hemodynamics.

Colloids

Human albumin (HA)

In one study in trauma intensive care unit (ICU) patients, volume replacement with HA given over 5 days to guarantee stable hemodynamics assessed with the help of a pulmonary artery catheter (PAC) did not change normal gastric mucosal perfusion measured by tonometry (no changes in pH). In septic patients, however, pH was significantly decreased by HA administration despite adequate correction of hypovolemia, suggesting ongoing perfusion abnormalities in this area by volume resuscitation with HA [51].

Dextran

No study in the clinical setting during the past 20 years was found showing the effects of dextran on organ perfusion, microcirculation, or tissue oxygenation in patients.

Hydroxyethyl starch (HES)

Hydroxyethyl starch (HES) refers to a class of synthetic colloid solutions that are modified natural polysaccharides, similar to glycogen. HES is derived from amylopectin, a highly branched starch that is obtained from waxy maize or potatoes. Polymerized α-glucose units are joined primarily by 1-4 linkages with occasional 1-6 branching linkages. Substituting hydroxyethyl for hydroxyl groups results in highly increased solubility and retards hydrolysis of the compound by amylase, thereby delaying its breakdown and elimination from the blood. The hydroxyethyl groups are introduced mainly at carbon positions C2, C3, and C6 of the anhydroglucose residues. The available HES preparations are characterized by concentration (hypooncotic: 3%; isooncotic: 6%; hyperoncotic: 10%), molar substitution (MS; low: <0.5; medium: 0.5; high: >0.5), the mean molecular weight [Mw, low-molecular weight (LMW)-HES: 70 kD; medium-molecular weight (MMW)-HES: 130–264 kD; high-molecular weight (HMW)-HES: >450 kD], the origin (potato-derived versus maize-derived HES), and the solvent (balanced and unbalanced HES preparations).

Eleven studies using HES in the clinical setting were identified [47, 49, 51–57]. Two studies in septic [54, 55] and one study in cardiac surgery patients [57] showed unchanged organ perfusion by HES. In all of these studies, pH (or pCO₂ gap) was measured by tonometry to assess the influence of volume replacement therapy on gastric mucosal perfusion. Eight studies in patients undergoing cardiac, vessel, trauma, or gynecologic surgery showed that HES improved organ perfusion or tissue oxygenation or that decrease in perfusion was blunted by administration of HES [47–49, 51–53, 56, 58]. In six of them, gastric mucosal perfusion (pH) was measured using tonometry and administration of HES was

Table 1 continued

<table>
<thead>
<tr>
<th>Reference (year)</th>
<th>Patients</th>
<th>Design</th>
<th>Fluids</th>
<th>Model</th>
<th>Method</th>
<th>Main results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hofman [57] (2005)</td>
<td>Cardiac surgery</td>
<td>Pros</td>
<td>HES 200/0.5 no control</td>
<td>Postoperative fluid load</td>
<td>pH tonometry</td>
<td>HES increased cardiac output, but not splanchnic mucosal perfusion</td>
</tr>
<tr>
<td>Al-Rawi [62] (2005)</td>
<td>SAH patients</td>
<td>Observational</td>
<td>23.5% HS</td>
<td>Observation</td>
<td>CPP, PbO₂, FV</td>
<td>Significant increase in CPP, PbO₂, and FV by 23.5% saline</td>
</tr>
<tr>
<td>Mahmood [58] (2009)</td>
<td>Abdominal aortic surgery</td>
<td>Pros rand</td>
<td>Gelatin, HES 200/0.62, HES 130/0.4</td>
<td>Perioperative volume expansion over 24 h</td>
<td>pH tonometry</td>
<td>Least drop in pH with HES 200/0.62; most pronounced drop in pH with gelatin</td>
</tr>
</tbody>
</table>

HES Hydroxyethylstarch, HA human albumin, pH fluid gastric intramucosal pH, RL Ringer’s lactate, HS hypertonic saline, HIES hypertonic saline plus hydroxyethylstarch, pros prospective, rand randomized, LDF laser Doppler flow, PCWP pulmonary capillary wedge pressure, SAH subarachnoid hemorrhage (SAH), CPP cerebral perfusion pressure, PbO₂ brain tissue oxygen, FV middle cerebral artery flow velocity, PAOP pulmonary artery occlusion pressure, pH fluid gastric intramucosal pH, ICU intensive care unit, pCO₂ gap arterial-to-intramuscular pCO₂ difference, ANH acute normovolemic hemodilution.
associated with significantly improved gastric mucosal perfusion [47, 48, 51, 53, 56, 58]. In one study in cardiac surgery patients, LDF was used to measure skin microcirculatory perfusion [52]. Microcirculatory blood flow showed better skin perfusion with HES 200/0.5 than with other HES preparations (HES 70/0.5 and HES 450/0.7). That the type of HES preparation seems to be of importance concerning modulation of the microcirculation has also been shown in a study of patients undergoing abdominal aortic surgery [58]. When using HES 200/0.62, pH was significantly less decreased compared to HES 130/0.4. In a study in patients undergoing major abdominal surgery, the influence of 6% HES 130/0.4 on tissue \(pO_2 \) was compared to patients who received saline solution for volume replacement [49]. Skeletal muscle tissue \(pO_2 \) (ptiO2) was monitored for 24 h after surgery using flexible minimally invasive microsensory \(pO_2 \) catheters. Although systemic hemodynamics and systemic oxygenation data were similar in both groups, ptiO2 increased significantly in the HES 130/0.4-treated patients (+59%), but decreased in the RL group (−23%).

Gelatins

Three studies were found that used gelatins for improving organ perfusion [54, 56, 58]. Gelatin was given for hemodynamic stabilization in patients suffering from sepsis or undergoing aortic surgery and compared to use of HES. pH was measured by tonometry to assess gastric mucosal perfusion. In the hypovolemic septic patients [54], use of gelatin very moderately increased pH (from 7.27 to 7.31) suggesting improved splanchnic perfusion. Of particular importance was also that no difference in systemic hemodynamic variables was found between the two volume replacement strategies, but only on gastric tonometry data. In two other studies from one research group performed in patients undergoing abdominal aortic surgery, either gelatin or HES (HES 200/0.62 or HES 130/0.4) was administered for volume expansion [56, 58]. HES 200/0.62-treated patients showed significantly less reduced splanchnic perfusion than those administered gelatin.

Plasma-adapted versus non-plasma-adapted volume replacement strategy

In a prospective, randomized, blinded trial in elderly surgical patients, either a plasma-adapted ("balanced") intraoperative fluid regimen consisting of Hartmann’s solution and 6% HES preparation dissolved in a balanced electrolyte solution (Hextend) or a nonplasma-adapted ("unbalanced") regimen consisting of 0.9% sodium chloride solution and 6% HES dissolved in 0.9% sodium chloride solution was given to guarantee stable hemodynamics using a specific algorithm [59]. Similar amounts of HES (approximately 2,500 mL) and colloids (approximately 1,500 mL) were given in both groups. Splanchnic perfusion was assessed by gastric tonometry. Systemic hemodynamics were without group differences, while hyperchloremic acidosis was seen only in the non-plasma-adapted volume group, and better gastric mucosal perfusion was provided by the balanced volume replacement strategy compared with saline-based fluids.

Hypertonic solutions

Great enthusiasm has been expressed for hypertonic saline (HS) or hypertonic/colloid solutions (HCS) in the treatment of hypovolemic shock ("small volume resuscitation"). Hypertonic volume replacement has been proposed to correct microcirculatory dysfunction associated with hypovolemia and its subsequent inflammatory effect. HS has been shown to increase perfusion pressure, improve capillary flow distribution, and offer endothelial de-swelling effects [60, 61]. Because hemodynamic effects of HS solutions are reported to be rather transient, HS is often mixed with colloids [hypertonic saline plus hyperoncotic dextran (HSD) or hypertonic saline plus hypertonic HES (HHES)].

In a study in cardiac surgery patients using HHES to double low pulmonary capillary wedge pressure (PCWP), skin microcirculatory blood flow measured by LDF was significantly increased in comparison to HES 200/0.5 [52]. In an observational study in patients with subarachnoid hemorrhage, Al-Rawi et al. [62] administered extremely hypertonic saline solution (23.5%). A significant increase in cerebral perfusion pressure, brain tissue oxygenation, and middle cerebral artery flow velocity was found accompanied by a significant decrease in intracranial pressure. An improvement in cerebral metabolic status in terms of lactate-pyruvate ratio was also seen after infusion of this extreme hypertonic solution.

Discussion

In recent years, microcirculation has gotten increased attention in the treatment of the critically ill patient. This includes the choice for the ideal volume replacement strategy to improve microcirculation. Interestingly, we found only 14 papers on this issue over the past 20 years. This dearth of information on the different volume replacement strategies for organ perfusion, microcirculation, or tissue oxygenation is remarkable as there is an ongoing controversy concerning the ideal plasma substitute to correct hypovolemia. Due to the small number of studies and the divergent study designs, we decided not
to perform a meta-analysis or a systematic review. The identified studies differed markedly with regard to the study design: (1) Plasma substitutes were used under different conditions, e.g., in trauma, sepsis, hemorrhage or surgery. (2) The amount of fluids that was administered differed widely among the studies making it difficult to distinguish between what effect is attributed to volume correction/expansion alone and what effect is specific for a certain plasma substitute. (3) Duration of volume administration differed; cases of “single-shot” versus continuous administration over hours were compared. (4) The endpoint of volume administration was not uniformly defined. Mostly fixed amounts of volume were given. A “goal-directed” volume replacement strategy, however, is a better approach than infusing a fixed amount of volume. (5) Although it is clear that measurement of systemic hemodynamic variables has limited sensitivity for identifying hemodynamic alterations associated with shock and resuscitation, most of the techniques used for assessing microcirculation are still at the stage of development and not yet ready for routine clinical use.

Looking at the results of the 14 identified studies, there appears to be a trend that colloids are more effective in beneficially modifying organ perfusion and microcirculation than crystalloids. One important objection to the results of these studies is that most of them used gastric tonometry to assess the effects of volume replacement on perfusion—a surrogate marker of splanchnic perfusion whose validity has often been doubted.

There is an urgent need for more information on the effect of fluids on microcirculation as there is a current trend to keep the patients more on the “dry side” by restricting volume administration. From the pathophysiological point of view, use of vasopressors in an hypovolemic patient to keep up blood pressure may initiate a fatal process on the microperfusion level with detrimental sequel for organ function and even for the patient’s outcome. It has been demonstrated that the use of vasopressors has no effect on prompting microcirculatory flow, emphasizing that a guarantee of adequate microperfusion may not be reached simply by maintaining or even increasing arterial blood pressure.

Whether the effects of a certain volume replacement strategy on microcirculation can be translated into its effects on patient’s outcome (survival) was beyond the scope of this review. Up to now it has not been shown that, by the choice of a certain volume replacement regimen, someone’s life was rescued, although beneficial effects on inflammation, microcirculation, and tissue oxygenation have been shown. This experience is similar to the introduction of new monitoring techniques, antibiotics, feeding strategies, or renal replacement strategies that have been shown to improve certain aspects in the management of the critically ill without improving overall survival. Our actual approach in the treatment of the critically ill aims to improve different parts in the mosaic of pathophysiology of critical illness; improving microcirculation may be one important part in this therapeutic puzzle.

As the commonly used plasma substitutes differ with regard to their physico-chemical characteristics, they also may differ with regard to their effects on organ perfusion, microcirculation, or tissue oxygenation. Based on the insights received from animal studies, questions that have to be addressed in the clinical setting will include how the different fluids affect the determinants of microcirculatory function. Important issues will be the effects on capillary flow and capillary recruitment in terms of functional capillary density, the extent of leukocyte endothelial interaction and glycocalyx determination, release of inflammatory mediators and reactive oxygen species, and finally the effects of the various fluid types on tissue oxygenation. These effects have to be determined for the different types of shock and will have to be related to organ function and clinical outcome.

Conclusions

Although it is clear from our literature search that the data that are needed to draw definite conclusions concerning the optimal fluid therapy and improvement in microcirculatory perfusion are not yet available, we will draw some careful conclusions from an “evidence level E” perspective. These can be summarized as follows: (1) A robust method or protocol for identifying hypovolemia and guiding fluid resuscitation is yet being sought. (2) Although it is clear that fluid therapy should be effective in correcting systemic hemodynamics, albeit based mainly on experimental studies, it should also be successful in correcting deficits in microperfusion and tissue oxygenation. (3) There is a need for bedside monitoring techniques for guiding fluid therapy integrating systemic, regional, microcirculatory, and oxygenation issues. (4) The choice between crystalloids and colloids is probably dependent on the patient’s condition and the cause of hypovolemia. (5) Compared to colloids, large amounts of crystalloids are needed to achieve similar systemic and microcirculatory endpoints leading to tissue edema and impaired tissue oxygenation. (6) It is expected that an optimal fluid composition for correction of hypovolemia may have to include additional components needed to support organ perfusion, microcirculation, and tissue oxygenation.

We hope that with this paper we have set the scene for important clinical investigations that will have to be carried out to find the optimal fluid composition and identify the optimal (micro)hemodynamic targets for volume resuscitation. We expect that protection of the microcirculatory function will play an important role in the future and will lead to improved treatment of the hypovolemic critically ill patient.
Acknowledgments The authors gratefully acknowledge the talents of Darryl Milstein who produced Figs. 1 and 2 in this paper. This study was supported only by an institutional grant.

Conflict of interest statement Boldt and his institution have received funding from B. Braun (Germany); Fresenius-Kabi (Germany); Serumwerke Bernburg (Germany); Baxter (Europe). Ince holds a patent on SDF imaging, has stock in MicroVision Medical, and has received educational grants from Hutchinson Technology, Baxter, Novartis, and Eli Lilly.

References

