GSM Network
RF Optimization Workshop
AGENDA

- Introduction
- Single Band Optimization Philosophy
- Network Optimization Process
- Optimization Phases
- Lucent BSS Optimization Parameters
- Cell Selection/Cell Reselection
- Power Control
 - Procedures
- Handover
 - Procedures
- Drive Testing and Analysis
- Drive Test Equipment
Introduction

● What is Optimization?

 - Activity of achieving and maintaining the required quality as designed

● Why Optimization?

 - Deviations between plan and reality
What is Optimization?

- Design
- Planning
- Implementation
- Optimization
Why Optimization?

- **Inaccuracy of radio planning**
 - Statistical variations in the path loss characteristics
 - Finite terrain database resolution

- **Implementation**
 - Antenna radiation pattern and effective radiated power
 - Antenna pattern distortion

- **Environment**
 - Seasonal environmental changes, e.g. trees, leaves
 - Environmental changes such as new highways, new buildings
Single Band Optimization Philosophy

- **Coverage** - Good signal level across the whole cell, coverage holes within a cell's service area must be minimized.

- **Interference** - A reasonable level of interference must be contained at cells service area in order to provide a quality air-interface.

- **Handover Behavior** - The quality of the air-interface in a cell with respect to handover behavior is good, no unnecessary handovers, Rx quality at acceptable level, BTS & MS use minimum transmit power.

- **Traffic Distribution** - The quality of the air-interface in a cell with respect to traffic distribution is good, maximum amount of traffic can be handed.
Optimization Phases

- **Initial Optimization**
 - Site Audit
 - Proper Parameters use
 - Verify Neighbors list
 - Reviewing Frequency Plan
 - Verify existing coverage, site design objectives
 - Analysis & Identification of Problem areas/cells
 - from PMS & drive test statistics,
 - customer complaints
 - Prioritization of problems
 - Identify Solution and Implement
 - Retest the problem areas
 - Consistency Check of the OMC database
 - Fine-tuning of parameters

- **Primary Optimization**

- **Maintenance Optimization**
 - On going process, weekly optimization
 - Database maintenance and consistency audits

Lucent Technologies Proprietary Use Pursuant to Company Instructions - All Rights Reserved

Slide No.7
BSS parameters related to Optimization

- CELL (RE) SELECTION
- POWER CONTROL
- HANDOVER CONTROL
Areas of improvement:

- Minimization of interference
- Handover behavior improvement
- Traffic distribution
Cell (Re)Selection

2 cell (re)selection criteria:

C1 & C2
Cell (Re)Selection

C1 Criteria
Used for cell selection and re-selection

C2 Criteria
Used in a *hierarchical* cell structure for re-selection only
Cell (Re)Selection

C1 = (A - Max(B, 0))

where:

A = Received Level Average - RXLEV_ACCESS_MIN
B = MS_TXPWR_MAX_CCH - max.output power of the MS

Criteria met if C1 > 0. MS will camp on to the cell with the highest C1 value.
Cell Reselect Hysteresis

LAC 1

Location Update 1

Location Update 2

LAC 2
Cell Reselect Hysteresis

Reselect Hysteresis LAC1

Reselect Hysteresis LAC2
<table>
<thead>
<tr>
<th>Signal Level</th>
<th>Range (in dBm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>$Rx_{level} < -110$</td>
</tr>
<tr>
<td>1</td>
<td>$-110 < Rx_{level} < -109$</td>
</tr>
<tr>
<td>2</td>
<td>$-109 < Rx_{level} < -108$</td>
</tr>
<tr>
<td>3</td>
<td>$-108 < Rx_{level} < -107$</td>
</tr>
<tr>
<td>..</td>
<td>..</td>
</tr>
<tr>
<td>..</td>
<td>..</td>
</tr>
<tr>
<td>..</td>
<td>..</td>
</tr>
<tr>
<td>..</td>
<td>..</td>
</tr>
<tr>
<td>62</td>
<td>$-49 < Rx_{level} < -48$</td>
</tr>
<tr>
<td>63</td>
<td>$Rx_{level} > -48$</td>
</tr>
</tbody>
</table>

SIGNAL LEVELS
SIGNAL QUALITY LEVELS

<table>
<thead>
<tr>
<th>Signal Quality</th>
<th>Range (in BER)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>BER < 0.2</td>
</tr>
<tr>
<td>1</td>
<td>0.2 < BER < 0.4</td>
</tr>
<tr>
<td>2</td>
<td>0.4 < BER < 0.8</td>
</tr>
<tr>
<td>3</td>
<td>0.8 < BER < 1.6</td>
</tr>
<tr>
<td>4</td>
<td>1.6 < BER < 3.2</td>
</tr>
<tr>
<td>5</td>
<td>3.2 < BER < 6.4</td>
</tr>
<tr>
<td>6</td>
<td>6.4 < BER < 12.8</td>
</tr>
<tr>
<td>7</td>
<td>BER > 12.8</td>
</tr>
</tbody>
</table>
Handover Control

TYPES OF HANDOVERS

- Mandatory HO
 - RXQUAL
 - RXLEVEL
 - DISTANCE

- Power Budget HO

- Duration of stay counter (Hierarchical Cell)

Preprocessing to support the following handover types:

- Internal Intra-Cell Handover (BSC-controlled)
- Internal Inter-Cell Handover (BSC-controlled)
- External Inter-Cell Handover (MSC-controlled)

- Inter Cell Handover may occur from:
 - SDCCH to SDCCH
 - SDCCH to TCH (directed retry)
 - TCH to TCH
Handover Control

Rxlevel (received by MS)

SERVER

NEIGHBOR

Handover Margin

Power Budget Handover Margin
Handover Procedures

HO Process
- BTS measures the UL and DL measurements every 480 ms.
 - RXLEV-XL
 - RXQUAL-XL
 - RXLEV-NCELL(1-6)
 - DIST (timing advance)
- BTS reports measurements to BSC.
- BSC calculates the averaged parameters using a sliding window:
 - AV-RXLEV-HO
 - AV-RXQUAL-XL-HO
 - AV-RXLEV-SCELL
 - AV-RXLEV-NCELL(I)
 - AV-DIST
- BSC decides the HO execution by comparing with threshold values.

Handover Algorithm Basic Steps
- HO Measurement Averaging (Preprocessing)
- HO Threshold Comparisons
- HO Target Cell Identification
- HO Decision (BSC internal or MSC)
- HO Execution (BSC internal or MSC)
BSS Optimization Parameters

Performance Determinants
- Coverage
- Interference
- Handover Behaviour
- Traffic Distribution

Optimization Solutions
- Enable/Disable GSM features
- BSS parameters
- Neighbour cell lists
- Antenna tilt, height & azimuth
- Frequency changes

Discontinuous Transmission
- Decreases interference level
- Saves battery power (uplink)

Frequency Hopping
- Decrease interference
- Suppress Rayleigh Fading

Power Control
- Saves battery power
- Decrease interference level
Network Parameter and Performance Determinants

<table>
<thead>
<tr>
<th>Performance Determinants</th>
<th>Adjustments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coverage</td>
<td></td>
</tr>
<tr>
<td>Interference</td>
<td></td>
</tr>
<tr>
<td>HO Behavior</td>
<td></td>
</tr>
<tr>
<td>Traffic Distribution</td>
<td></td>
</tr>
<tr>
<td>Enable GSM Features</td>
<td></td>
</tr>
<tr>
<td>BSS Parameters</td>
<td></td>
</tr>
<tr>
<td>N'bour Cell List</td>
<td></td>
</tr>
<tr>
<td>Antenna Tilt, etc</td>
<td></td>
</tr>
<tr>
<td>Frequency Change</td>
<td></td>
</tr>
</tbody>
</table>
Network Parameter and Performance Determinants

<table>
<thead>
<tr>
<th>Performance Determinants</th>
<th>Adjustments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Enable GSM Features</td>
</tr>
<tr>
<td>Coverage</td>
<td>*</td>
</tr>
<tr>
<td>Interference</td>
<td>*</td>
</tr>
<tr>
<td>HO Behavior</td>
<td>*</td>
</tr>
<tr>
<td>Traffic Distribution</td>
<td>*</td>
</tr>
</tbody>
</table>
Drive Testing and Analysis

• **Trouble Ticket**

 - Is a document by which various problems reported by customers are passed along through the organization

 - Must reply upon experience and knowledge to determine which option to overcome the problem

 - Different scenarios can be followed to solve the problem, such as drive testing, parameters changes, antenna adjustment, etc..

 - To verify if the problem is not related to MS itself
Drive Testing and Analysis

- Air Interface Information
 - RXLEVEL
 - RXQUALITY
 - BCCH, BSIC of the serving cell
 - BCCH, BSIC and RXLEVEL of the 6 best neighbours
 - TIMING ADVANCE
 - GSM BEST SERVER
Drive Testing and Analysis

- Drive Testing
 - Propagation Measurements

- Mobile Network Performance Monitoring
 - Quality Assessment
 - Optimization
Drive Testing and Analysis

Drive Tests for Optimization

- Initial network coverage verification and benchmarking
- Verification before and after changes
- Locating and measuring interference
- Locating areas where traffic problems exist
- Locate coverage holes
- Preventive maintenance
- Simultaneous measurements of the other networks
Drive Testing and Analysis

Drive Test Data Collection

- CELL ID including BSIC, LAC, and time slot
- RXLEVEL for the serving and the neighbour cells
- RXQUALITY for the serving cell
- BCCH, BSIC for the serving and the neighbour cells
- TIMING ADVANCE
- TRANSMIT POWER
- GPS POSITION DATA
- TIME STAMPS
Drive Testing and Analysis

Drive Test Route Planning

- **Primary route (street level)**
 Includes all major roads, highways and wide thoroughfares

- **Secondary route (street level)**
 Includes all streets, subdivisions and compounds when accessible

- **Miscellaneous routes (in-building and special locations)**
 Includes golf courses, beach resorts, shopping malls, department stores, convention centers, hotels and resorts
Drive Testing and Analysis

Performance Problems that often encountered:

- Cell Dragging
- Dropped Calls
- Ping-Ponging
- System Busy
- Handover boundary
Drive Testing and Analysis

Cell Dragging - Calls may drag a cell beyond the desired handover boundary. This might result dropped calls or bad Rx quality.

Suggestions:

- Create an appropriate neighbour cell list
- Change HO parameters such as thresholds, margin, cell baring, etc
- Check serving cell’s cell identifier in the neighbour cell’s neighbour list
- Check neighbour cell’s BCCH, BSIC, LAC, Cell ID, etc
Drive Testing and Analysis

Dropped Calls - Caused by either RF environments or incorrect system parameters

Suggestions:

- Check if an appropriate neighbour cell list is defined
- Check HO parameters
- Existing or new coverage holes
- Interference, Co-channels, Adjacent channels or External interference
- Serving cells might go down, coverage smaller as before
- Abnormalities such as call setup failure
Ping Ponging - Serving keep changing and as a result of bad audio quality

Suggestions:

• Check if an appropriate neighbour cell list is defined
• Check HO parameters
• Interference, Co-channels, Adjacent channels or External interference
• Lack of dominant server
• Poor coverage
• Not optimal antenna configuration
Drive Testing and Analysis

System Busy - System busy on several call attempts and site appears consistently on the traffic report

Suggestions:

Short Term
• Reduce the traffic on the congested cell/site. However, the proposed changes MUST NOT create any unacceptable problems such as coverage holes, dropped calls, etc

Shot term solutions are re-design the antenna configuration, Add additional RTs, Change BTS configuration

Long Term
• Build a new cell site to off-load traffic
Handover Boundary - Handovers do not occur at the desired HO boundary, the result is an imbalance in traffic distribution across the system

Suggestions:
• Check if an appropriate neighbour cell list is defined
• Check HO parameters
• Inappropriate antenna configurations of the serving and neighbour cells
• Interference, Co-channels, Adjacent channels or External interference
• No TCH available (neighbour cells congestion)
Drive Test Equipment

Typical example of drive test equipment components:

- Test Mobile phone
- Scanning receiver
- Transceiver system
- Antennas
- GPS
- Visual display unit
- Microphone
- Loudspeaker box
- Laptop computer
Drive Test Equipment

ERICSSON TEMS 900/1800
- Test 2 Network simultaneously
- Full Layer 2 & 3 decoding
- Control of Layer 3 msg
- Forced selection of idle and dedicated mode
- Filtering msg streams
- Rxqual in idle mode
- Sending SMS
- SIM card information

COMARCO WIRELESS
- Test 4 networks simultaneously
- GSM 900/1800, ETACS, AMPS
- Partial Layer 2 & 3 decoding
- Fast scanning receiver, GSM RF Spectrum
- Ability to display adjacent channel interference screen
- Noise measurements

SAFECO WALKABOUT
- In-building coverage
Drive Test Equipment

AGILENT TECHNOLOGIES(HP)
- Test 4 networks simultaneously
- Fast scanning receiver, UL & DL
- Frequency Hopping Table
- Spectrum Analysis
- Channel Power
- CW Measurement
- Interference Measurement
- GSM Broadcast Channel Analysis

QVOICE98
- Test 4 networks simultaneously
- Evaluate measurement both way
- Good Presentation
- Capable on measuring MOS, Speech Quality, Rxquality, Rxlevel