Evaluation of New Platinum-Based Treatment Regimens in Advanced-Stage Ovarian Cancer: A Phase III Trial of the Gynecologic Cancer InterGroup

From the Fox Chase Cancer Center, Philadelphia, PA; Gynecologic Oncology Group Statistical and Data Center, Buffalo, NY; Franklin Square Hospital; Baltimore, MD; Guy’s Hospital, London, United Kingdom; Arizona Cancer Center, Tucson, AZ; Australia New Zealand Gynaecological Oncology Group, Camperdown, Australia; European Institute of Cancer Research, Milano, Italy; Ohio State University, Columbus, OH; University of Minnesota School of Medicine, Minneapolis, MN; University of Iowa Hospitals and Clinics, Iowa City, IA; Washington University School of Medicine, St. Louis, MO; University of California, Irvine Medical Center, Orange, CA; University College London and Medical Research Council Clinical Trials Unit, London, United Kingdom; National Cancer Institute, Bethesda, MD; and Indiana University School of Medicine, Indianapolis, IN.

Submitted July 16, 2008; accepted November 11, 2008; published online ahead of print at www.jco.org on February 17, 2009.

Supported by National Cancer Institute Grants No. CA 27469 to the Gynecologic Oncology Group Administrative Office and CA 37517 to the Gynecologic Oncology Group Statistical and Data Center. ICONS was funded by the MRC and has been supported by the NCRN through Grant No. ISRCTN41636183.

Presented in part at the 42nd Annual Meeting of the American Society of Clinical Oncology, June 2-6, 2006, Atlanta, GA.

Authors’ disclosures of potential conflicts of interest and author contributions are found at the end of this article.

Corresponding author: Michael A. Bookman, MD, Fox Chase Cancer Center, 333 Cottman Ave, W41, Philadelphia, PA 19111 michael.bookman@fccc.edu.

The Appendix is included in the full-text version of this article, available online at www.jco.org. It is not included in the PDF version (via Adobe® Reader®).

© 2009 by American Society of Clinical Oncology

INTRODUCTION

After cytoreductive surgery, advanced-stage epithelial ovarian carcinoma (EOC) initially appears chemotherapy sensitive, as response rates to platinum-based therapy exceed 80%. However, long-term survival remains poor as a result of recurrence and emergence of drug resistance.

Although platinum-based agents (ie, cisplatin or carboplatin) and taxanes remain the core of primary treatment, clinical trials have incorporated other cytotoxic agents, including topotecan, gemcitabine, and methoxypolyethylene glycol-saturated liposomal doxorubicin (PLD). Each agent has well-defined activity in the setting of recurrent EOC, including in platinum-resistant populations. Both topotecan and PLD are US Food and Drug Administration–approved as single agents for management of recurrent EOC.1,2 Gemcitabine is US Food and Drug Administration–approved for management of recurrent, platinum-sensitive EOC in combination with carboplatin, but it is also utilized as a single agent.3

Multiple international, phase III trials were considered to evaluate emerging regimens that were fostered by collaborative development through the Gynecologic Cancer InterGroup (GCIG). A multimodal, multitarget design to evaluate four different experimental arms against a single reference arm was proposed by the Gynecologic Oncology Group.
Patients and Methods

Objectives

The primary objective was to compare the efficacy of each experimental arm against the reference arm (ie, carboplatin and paclitaxel) on the basis of overall survival (OS) and progression-free survival (PFS). Evaluation of toxicities, complications, dose intensity, and cumulative dose delivery would also be described for each regimen.

Patient Selection

Eligible patients submitted tissue to confirm histologic diagnosis (EOC or primary peritoneal carcinoma [PPC]) and International Federation of Gynecology and Obstetrics stage (III or IV), with either optimal (≤1 cm) or suboptimal residual disease. Pathology materials were reviewed by each participating regional group and were subject to routine centralized audit. Patients were also required to have a GOG performance status of ≤2; absolute neutrophil count ≥1,500/µL, platelets ≥100,000/µL, creatinine ≤1.5× institutional upper limit normal (ULN), bilirubin ≤1.5× ULN, AST and alkaline phosphatase ≤2.5× ULN, and baseline sensory or motor neuropathy grade 1 or lower according to National Cancer Institute Common Toxicity Criteria version 2.

Patients who had tumors of low malignant potential, with carcinosarcoma, or with nonepithelial tumors were not eligible. Patients who had personal histories of breast cancer were eligible, provided that they were disease free for at least 3 years without contraindications for protocol-based chemotherapy. Patients who had early-stage synchronous endometrial cancer were also eligible, provided there was no more than minimum invasion without treatment. Patients who had early-stage synchronous endometrial cancer were also eligible, provided there was no more than minimum invasion without contraindications for protocol-based chemotherapy. Patients who had early-stage synchronous endometrial cancer were also eligible, provided there was no more than minimum invasion without contraindications for protocol-based chemotherapy. Patients who had early-stage synchronous endometrial cancer were also eligible, provided there was no more than minimum invasion without contraindications for protocol-based chemotherapy. Patients who had early-stage synchronous endometrial cancer were also eligible, provided there was no more than minimum invasion without contraindications for protocol-based chemotherapy. Patients who had early-stage synchronous endometrial cancer were also eligible, provided there was no more than minimum invasion without contraindications for protocol-based chemotherapy. Patients who had early-stage synchronous endometrial cancer were also eligible, provided there was no more than minimum invasion without contraindications for protocol-based chemotherapy. Patients who had early-stage synchronous endometrial cancer were also eligible, provided there was no more than minimum invasion without contraindications for protocol-based chemotherapy. Patients who had early-stage synchronous endometrial cancer were also eligible, provided there was no more than minimum invasion without contraindications for protocol-based chemotherapy. Patients who had early-stage synchronous endometrial cancer were also eligible, provided there was no more than minimum invasion without contraindications for protocol-based chemotherapy.

Participating Groups

Primary coordination was provided by GOG in collaboration with GCIG and included the Australia and New Zealand Gynecologic Oncology Group (Camperdown, Australia), MRC-UK (London, United Kingdom), and Istituto Mario Negri (Milan, Italy). Each international group utilized a regional office for registration, random assignment, data management, and quality assurance monitoring. Collaborating organizations within the United States also included the Southwest Oncology Group and five other groups managed through the Clinical Trials Support Unit of the National Cancer Institute (Table 1).

Table 1. Participation From International Cooperative Groups

<table>
<thead>
<tr>
<th>Cooperative Group Coordinating Center</th>
<th>Enrollment Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANZGOG</td>
<td>戈G</td>
</tr>
<tr>
<td>GO</td>
<td>IMN</td>
</tr>
<tr>
<td>MRC-UK</td>
<td>SWOG</td>
</tr>
<tr>
<td>NCI-Other*</td>
<td>---</td>
</tr>
<tr>
<td>First enrollment date</td>
<td>ANZGOG: June 22, 2002; GOG: February 7, 2001; IMN: October 30, 2003; MRC-UK: July 22, 2002; SWOG: October 23, 2001; NCI-Other*: June 24, 2002</td>
</tr>
<tr>
<td>Total No. of patients in enrollment</td>
<td>ANZGOG: 184; GOG: 3,435; IMN: 67; MRC-UK: 363; SWOG: 198; NCI-Other*: 65</td>
</tr>
</tbody>
</table>

Abbreviations: ANZGOG, Australia and New Zealand Gynecologic Oncology Group; GOG, Gynecologic Oncology Group; IMN, Istituto Mario Negri; MRC-UK, Medical Research Council in the United Kingdom; SWOG, Southwest Oncology Group; NCI, National Cancer Institute.

© 2009 by American Society of Clinical Oncology. All rights reserved.
for interval-debulking surgery. Annual accrual was estimated to be 1,000 patients, with 50% accrued from collaborating groups. The estimated median time to progression or death for women with advanced-stage EOC who were receiving carboplatin and paclitaxel was 15 months, and estimated median survival was 36 months. OS and PFS were assessed from the date of random assignment in all patients on the basis of an intent-to-treat principle, and death due to a cause other than progression or death was considered a failure event. The last date of contact was used to calculate a censored time at risk for patients without documented progression or death for the purpose of this report, only patients who received at least some of their assigned treatment are included in the summaries of adverse events. An event-triggered interim analysis (IA) was scheduled to occur after 240 PFS events (ie, progression or death) in the reference arm. The purpose of the interim analysis was to eliminate regimens that demonstrated insufficient evidence of activity.11 The IA included pairwise PFS comparisons between the reference arm and each of the experimental arms (ie, four comparisons) by using a stratified log-rank test.12 A regimen was deemed worthy of second-stage accrual if the observed relative PFS event rate was at least 7% lower than the reference arm. If second-stage accrual was indicated, additional patients would be registered with random assignment to the reference arm and to each experimental regimen and was scheduled to occur when at least 365 deaths were reported among all of the patients registered to the reference arm. None of the experimental regimens reduced the PFS event rate at least 7% relative to the reference arm. Therefore, in Adverse events considered at least possibly related to treatment were categorized, graded, and reported according to National Cancer Institute Common Toxicity Criteria version 2.0. Emerging adverse event and routine toxicity reports were reviewed by regional study chairs and were summarized twice yearly in conjunction with semiannual GOG meetings; minor amendments to clarify protocol therapy and supportive care were considered. In addition, international members were recruited for a study-specific data safety and monitoring committee that was charged with ongoing review of safety reports and was empowered to recommend study closure, as appropriate, on the basis of the results of the IA and other scheduled or unscheduled reports. For the purpose of this report, only patients who received at least some of their assigned treatment are included in the summaries of adverse events.

The study was activated in January 2001, and the first patient was enrolled in February 2001 (Table 1). The planned interim analysis of PFS occurred when there were 272 events (ie, progression or death) on the reference arm and 1,345 cumulative events among 3,836 patients (data freeze on May 2004). Deaths that were potentially treatment-related occurred in less than 1% of patients without clustering on any particular arm. None of the experimental regimens reduced the PFS event rate at least 7% relative to the reference arm. Therefore, in

Table 2. CONSORT

<table>
<thead>
<tr>
<th>Variable</th>
<th>I (Reference)</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemotherapy dose and schedule</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carboplatin, C 1-4</td>
<td>AUC 6 D1</td>
<td>AUC 5 D1</td>
<td>AUC 5 D1</td>
<td>AUC 5 D3</td>
<td>AUC 6 D8</td>
</tr>
<tr>
<td>Paclitaxel, C 1-4</td>
<td>175 mg/m² D1 (3 hours)</td>
<td>175 mg/m² D1 (3 hours)</td>
<td>175 mg/m² D1 (3 hours)</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Gemcitabine, C 1-8</td>
<td>—</td>
<td>800 mg/m² D1,8 (30 minutes)</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Gemcitabine, C 1-4</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>1,000 mg/m²/d D1,8</td>
<td>—</td>
</tr>
<tr>
<td>PLD, C 1, 3, 5, 7</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>30 mg/m² D1</td>
<td>—</td>
</tr>
<tr>
<td>Topotecan, C 1-4</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>1.25 mg/m²/d D1,2,3</td>
<td>—</td>
</tr>
<tr>
<td>Carboplatin, C 5-8</td>
<td>AUC 6 D1</td>
<td>AUC 5 D1</td>
<td>AUC 5 D1</td>
<td>AUC 6 D1</td>
<td>AUC 6 D1</td>
</tr>
<tr>
<td>Paclitaxel, C 5-8</td>
<td>175 mg/m² D1 (3 hours)</td>
</tr>
</tbody>
</table>

No. of patients

<table>
<thead>
<tr>
<th>Status</th>
<th>I (Reference)</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Randomly assigned</td>
<td>864</td>
<td>864</td>
<td>862</td>
<td>861</td>
<td>861</td>
</tr>
<tr>
<td>Ineligible after review†</td>
<td>45</td>
<td>49</td>
<td>39</td>
<td>39</td>
<td>40</td>
</tr>
<tr>
<td>Received no treatment†</td>
<td>1</td>
<td>2</td>
<td>7</td>
<td>11</td>
<td>7</td>
</tr>
<tr>
<td>Discontinued</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Toxicity or refusa</td>
<td>73</td>
<td>120</td>
<td>95</td>
<td>51</td>
<td>83</td>
</tr>
<tr>
<td>Progression or death</td>
<td>58</td>
<td>42</td>
<td>65</td>
<td>58</td>
<td>44</td>
</tr>
</tbody>
</table>

NOTE. The intent-to-treat analysis included all registered and randomly assigned patients (eligible and ineligible). Chemotherapy regimens in treatment arms were as follows: I, carboplatin + paclitaxel; II, carboplatin + paclitaxel + gemcitabine; III, carboplatin + paclitaxel + doxorubicin; IV, carboplatin + topotecan then carboplatin + paclitaxel; V, carboplatin + gemcitabine then carboplatin + paclitaxel.

Abbreviations: C, cycle; AUC, area under the concentration-time curve; D, day; PLD, methoxypolyethylene glycosylated liposomal doxorubicin.

†Treatment information unavailable for 11 patients.
In accordance with prespecified guidelines, the study was closed to additional accrual in September 2004. At that time, a total of 4,312 patients were enrolled, which included 212 patients who did not fulfill all eligibility criteria upon retrospective review (Table 2).

Demographic, stratification, and prognostic factors were well balanced among treatment arms (Fig 1). Of note, consistent with current surgical trends, 70% of women who were registered had optimal cytoreduction, and less than 25% of women had measurable residual disease. Overall, 79% of women completed eight cycles of the assigned therapy.

There was increased hematologic toxicity in the triplet regimens and increased thrombocytopenia in both arms with gemcitabine (Fig 2A). Neuropathy was decreased in the doublet regimens (Fig 2B), which included only four cycles of paclitaxel. Transient elevations of transaminases were more commonly observed in arms with gemcitabine, but they were generally without clinical impact. There was no significant increase in pulmonary toxicity associated with gemcitabine.

The primary analysis of OS and an updated analysis of PFS are reported here. The median duration of follow-up among those women alive at last contact is 3.7 years. Relative to the reference arm, the adjusted risk of first progression or death (PFS) ranged from 0.984 to 1.066 for the experimental regimens (Fig 3A). The adjusted relative risks of death ranged from 0.952 to 1.114 (Fig 3B). There was no statistically significant difference in either PFS or OS associated with any of the experimental regimens compared with the eight cycles of carboplatin and paclitaxel, which achieved a median PFS of 16.0 months and a median OS of 44.1 months for the entire study population, including those patients with optimal and suboptimal residual disease. Incremental end points and proportion of progressions determined by CA-125 were also similar for all regimens (Appendix Table A1, online only).

An exploratory analysis of hazard ratios (HRs) for survival on the basis of diagnosis (EOC vs PPC), age (≤ 65 vs ≥ 65 years), stage (III vs IV), histology (grade 1, 2, 3, vs clear-cell), or participating group failed to disclose any evidence of differential benefit from experimental therapy in any subgroup (data not shown).

As anticipated, the extent of cytoreductive surgery remains an important prognostic factor for OS (Fig 4A), second only to stage at diagnosis. For patients with suboptimal (> 1 cm), gross-optimal (≤ 1 cm), and microscopic residual disease, the median PFS rates were 13, 16, and 29 months, respectively, and the median OS rates were 33, 40,

<table>
<thead>
<tr>
<th>Treatment Regimen</th>
<th>CP (n = 864)</th>
<th>CPG (n = 864)</th>
<th>CPD (n = 862)</th>
<th>CT+CP (n = 861)</th>
<th>CG+CP (n = 861)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patient Characteristics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median age (yr)</td>
<td>57.9</td>
<td>59.1</td>
<td>59.5</td>
<td>58.5</td>
<td>59.3</td>
</tr>
<tr>
<td>FIGO Stage 3 (%)</td>
<td>83.8</td>
<td>86.7</td>
<td>86.2</td>
<td>86.4</td>
<td>83.7</td>
</tr>
<tr>
<td>FIGO 4 (%)</td>
<td>16.2</td>
<td>13.3</td>
<td>13.8</td>
<td>13.7</td>
<td>16.3</td>
</tr>
<tr>
<td>Measurable (%)</td>
<td>21.6</td>
<td>22.6</td>
<td>22.7</td>
<td>23.3</td>
<td>24.2</td>
</tr>
<tr>
<td>Primary ovarian (%)</td>
<td>86.6</td>
<td>87.0</td>
<td>85.5</td>
<td>87.3</td>
<td>87.2</td>
</tr>
<tr>
<td>Peritoneal (%)</td>
<td>13.4</td>
<td>13.0</td>
<td>14.5</td>
<td>12.7</td>
<td>12.8</td>
</tr>
</tbody>
</table>

FIGO, International Federation of Gynecology and Obstetrics; **CP**, carboplatin and paclitaxel; **CPG**, carboplatin, paclitaxel, and gemcitabine; **CPD**, carboplatin, paclitaxel, and doxorubicin; **CT-CG**, carboplatin plus paclitaxel; **CG-CP**, carboplatin plus gemcitabine, then carboplatin plus paclitaxel.

Fig 1. Patient demographic characteristics, prognostic factors (including stage, histology, and measurable disease), and stratification parameters (including maximal residual disease and intent to perform interval cytoreductive surgery).
and 68 months, respectively. It has been postulated that experimental therapy might have greater impact in patients who have small-volume residual disease, as they have more favorable prognoses. However, a planned analysis of HR for survival in relationship to the extent of residual disease, illustrated by hazard ratios for survival. Prog, progression; CPG, carboplatin, paclitaxel, and gemcitabine; CPD, carboplatin, paclitaxel, and doxorubicin; CT-CP, carboplatin plus topotecan, then carboplatin plus paclitaxel; CG-CPP, carboplatin plus gemcitabine, then carboplatin plus paclitaxel.

DISCUSSION

Maximal cytoreductive surgery and platinum-based chemotherapy remains the current global standard for management of advanced-stage EOC and PPC. Mature, phase III data14-16 and a meta-analysis17 established the superiority of cisplatin plus paclitaxel compared with cisplatin plus cyclophosphamide. Phase III trials also verified that carboplatin plus paclitaxel was at least as effective as cisplatin plus paclitaxel,18,19 which prompted the GCIG to publish consensus guidelines favoring carboplatin plus paclitaxel in all platinum-resistant settings.20 However, sequential therapy with platinum followed by paclitaxel at progression may achieve equivalent long-term outcomes for some patients.21,22
Although platinum-based agents remain dominant, taxanes have emerged as the second-most important class of agents in EOC, and carboplatin with paclitaxel was selected as the point of reference for this trial. Substitution of docetaxel for paclitaxel is an acceptable alternative that has a reduced risk of neuropathy and hypersensitivity, but it has an increased risk of dose-limiting hematologic toxicity, which would have complicated each experimental regimen.23

Even with these well-tolerated and effective standard therapies, most women who have advanced-stage EOC will eventually experience recurrence with chemotherapy-resistant disease, which will prompt a search for new agents to maximize the benefits of primary therapy. Several agents have emerged that have well-defined activity in the setting of recurrent disease, including topotecan, PLD, prolonged oral etoposide, and gemcitabine. Each of these agents has a unique molecular target, mechanism of action, and pattern of resistance, which lends credence to the development of multiagent combinations. In addition, each agent has the potential to accentuate the platinum response through increased formation of platinum-DNA adducts or through inhibition of DNA repair. In small, nonrandomized trials, response rates that approached 100% have been reported with combinations of carboplatin, paclitaxel, and gemcitabine.24,25 However, it remains to be determined from randomized trials if enhancement of platinum-mediated toxicity would be associated with improved survival.

The cooperative groups, which recognized that a large number of patients would be required for a definitive analysis of newer combinations, worked together through GCIG, which provided a framework for sharing preliminary clinical data and for the coordinated planning of international phase III trials.26,27 Although some trials ultimately had overlapping treatment regimens, the cumulative global experience provides a robust analysis of multiple platinum-based chemotherapy regimens for advanced-stage disease.

Preliminary development for GOG0182-ICON5, including phase I trials, was coordinated largely through GOG. Final protocol development was accomplished with collaboration from GCIG members. Accrual was facilitated by joint enrollment of patients who had optimal and suboptimal residual disease. International criteria were adopted to permit use of CA-125 to declare progression of disease after completion of primary therapy.5 Second-look laparotomy was not permitted, which helped to preserve PFS as a valid end point for IA.

The accrual rate reached 1,200 patients per year, which exceeded all prior combined accruals on GOG phase III trials in EOC. Strong participation within the gynecologic oncology community succeeded in enrolling approximately 6.25% of all women who had newly diagnosed advanced-stage disease in the United States during this period.

Results from GOG0182-ICON5 have matured in conjunction with other international efforts, including two trials to evaluate the addition of epirubicin and a smaller, randomized trial that incorporated topotecan (3 days) as a triplet with carboplatin and paclitaxel as well as a sequential doublet combination of cisplatin and topotecan followed by carboplatin and paclitaxel.28–31 Data are awaited from a triplet that incorporated gemcitabine (AGO-OVAR9), similar to GOG0182-ICON5.

Currently, there are not sufficient data to recommend any new two- or three-drug combination; thus, carboplatin with paclitaxel remains the standard regimen of choice. Although individual studies might be critiqued with regard to dose and/or schedule of individual drugs, each regimen was limited by practical management of toxicity in the setting of a cooperative group. More than 10,000 women are projected to have participated in these international studies, and it would be surprising if small differences in dose or schedule would have a major impact on long-term clinical outcomes.

There are several important points not directly addressed by these trials, including route of drug administration (including intraperitoneal options), molecular profiling of tumor and/or host to guide drug selection, and incorporation of molecular-targeted agents. In particular, the number and diversity of new agents identify important challenges to our conventional clinical paradigm. Compelling data have also emerged with single-agent bevacizumab in recurrent disease, which prompted the development of two international, front-line, phase III trials to address the addition of bevacizumab in combination with carboplatin and paclitaxel.32

Large, multiarm, multistage, phase III trials are feasible with international collaboration and can promote the optimal use of limited clinical resources. However, innovative strategies are needed to efficiently select targeted agents and combinations that merit phase III evaluation, to improve outcomes beyond the current era of platinum-based therapy.

Although all authors completed the disclosure declaration, the following author(s) indicated a financial or other interest that is relevant to the subject matter under consideration in this article. Certain relationships marked with a “U” are those for which no compensation was received; those relationships marked with a “C” were compensated. For a detailed description of the disclosure categories, and for more information about ASCO’s conflict of interest policy, please refer to the Author Disclosure Declaration and the Disclosures of Potential Conflicts of Interest section in Information for Contributors.

Employment or Leadership Position: Michael A. Bookman, Genentech Oncology (C); Ann Marie Swart, Schering-Plough (C) Consultant or Advisory Role: Michael A. Bookman, Bristol-Myers Squibb (C), GlaxoSmithKline (C), Johnson & Johnson (C), Sanoﬁ-aventis (C), Novartis (C), Genentech Oncology (C); William P. McGuire, GlaxoSmithKline (C), Sunesis (C), Unither (C); Peter G. Harper, Roche (C), Novartis (C), Pfizer Inc (C); David G. Mutch, Eli Lilly & Co (C), GlaxoSmithKline (C) Stock Ownership: Ann Marie Swart, Schering-Plough Honoraria: Michael A. Bookman, Eli Lilly & Co; William P. McGuire, GlaxoSmithKline, Imclone, Sunesis; Peter G. Harper, Novartis; Michael Friedlander, Eli Lilly & Co, Schering-Plough; David G. Mutch, GlaxoSmithKline, Eli Lilly & Co, Merck & Co; Robert A. Burger, Genentech Research Funding: William P. McGuire, GlaxoSmithKline; David G. Mutch, Eli Lilly & Co Expert Testimony: None Other Remuneration: None

Conception and design: Michael A. Bookman, Mark F. Brady, William P. McGuire, Peter G. Harper, David S. Alberts, Edward L. Trimble

Financial support: Edward L. Trimble

Administrative support: Ann Marie Swart, Edward L. Trimble

Provision of study materials or patients: Michael A. Bookman, William P. McGuire, Michael Friedlander, Jeffrey M. Fowler, Peter A. Argenta, Koen De Geest, David G. Mutch, Robert A. Burger, Ann Marie Swart, Edward L. Trimble, Lawrence M. Roth

AUTHOR CONTRIBUTIONS
Chemotherapy of Ovarian Cancer

Collection and assembly of data: Michael A. Bookman, Mark F. Brady, William P. McGuire, David G. Mutch, Robert A. Burger, Ann Marie Swart, Chrissann Accario-Winslow, Lawrence M. Roth

Data analysis and interpretation: Michael A. Bookman, Mark F. Brady, William P. McGuire, Ann Marie Swart, Lawrence M. Roth

REFERENCES

Acknowledgment

We thank the many women who participated in this trial and their families and physicians for support of these women, Suzanne Baskerville and Wendi Qian for expert assistance with centralized data coordination, and Mahesh K. Parmar for collaborative statistical design.

www.jco.org

© 2009 by American Society of Clinical Oncology

Downloaded from jco.ascopubs.org by JON ESTRADA on May 30, 2009 from 122.53.37.8. Copyright © 2009 by the American Society of Clinical Oncology. All rights reserved.
ERRATA

The March 10, 2009, article by Escudier et al, entitled “Randomized Phase II Trial of First-Line Treatment With Sorafenib Versus Interferon Alfa-2a in Patients With Metastatic Renal Cell Carcinoma” (J Clin Oncol 27:1280-1289, 2009), contained errors.

In Figure 1, two of the treatment boxes were inadvertently transposed, and the label for Period 2 was misplaced. The corrected figure is reprinted below in its entirety. The online version has been corrected in departure from the print.

![Study design schematic](image)

Eligibility criteria
- Clear all histology
- No prior systemic therapy
- ECOG performance status 0 or 1
- All MSKCC risk groups

Open-label 1:1 Stratification MSKCC (N = 189)

Period 1
- Received sorafenib 400 mg 2×/day (n = 97)
- Discontinued treatment (n = 15)
- Adverse events (n = 11)
- Death (n = 4)

Period 2
- Received sorafenib 600 mg 2×/day (n = 44)
- Discontinued treatment (n = 25)
- Progressive disease (n = 23)
- Death (n = 2)

Fig 1. Study design schematic. Abbreviations: AEs, adverse events; ECOG, Eastern Cooperative Oncology Group; IFN, interferon alfa-2a; MSKCC, Memorial Sloan-Kettering Cancer Center; MIU, million units.

DOI: 10.1200/JCO.2009.23.1290

In Figure 3B, the y-axis was labeled as Progression-Free Survival, whereas it should have been Overall Survival.

DOI: 10.1200/JCO.2009.23.1308