Defining a standard medication kit for prehospital and retrieval physicians: a comprehensive review

J Sadewasser, A Potter and D Ellis

doi: 10.1136/emj.2008.062810

Updated information and services can be found at:
http://emj.bmj.com/content/27/1/62.full.html

These include:

References
This article cites 11 articles, 1 of which can be accessed free at:
http://emj.bmj.com/content/27/1/62.full.html#ref-list-1

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To order reprints of this article go to:
http://emj.bmj.com/cgi/reprintform

To subscribe to Emergency Medicine Journal go to:
http://emj.bmj.com/subscriptions
Defining a standard medication kit for prehospital and retrieval physicians: a comprehensive review

J Sadewasser, A Potter, D Ellis

ABSTRACT

Background: There is little consolidated evidence for which prehospital and retrieval drugs a given service should carry.

Objectives: To suggest a core group of drugs based on the best evidence currently available.

Methods: This paper has reviewed documents from recognised evidence-based sources and put together an initial skeleton for an evidence-based drug pack.

Results: The resultant list of drugs is divided up into core agents with suggestions for regional variations. This may be of particular interest to de novo services.

Conclusions: This review offers a starting point for services based on the evidence currently available. It is hoped that prehospital and retrieval clinicians will start to look analytically at what they carry and, through a process of audit, aim to improve the evidence in this area. Future reviews and comparisons of worldwide prehospital and retrieval databases are suggested.

A number of general approaches to prehospital emergency medicine are found across the world. These range from an almost exclusively paramedic-led service found in the USA and the UK to the physician-led services seen in other Western European countries. In recent years the role of the prehospital physician has evolved, and increasing numbers of services use doctors in this field.1-8

Traditional systems such as the Royal Flying Doctor Service in Australia and newer international retrieval services and aid organisations (eg, International SOS, Malteser International) also use doctors when working in isolated areas to rescue and treat patients who otherwise have little access to medical care.9-12 In North America, signs of increasing involvement of physicians in certain out-of-hospital scenarios can also be found.1,13 Air medical and other remote area emergency services treat a large number of patients with a broad spectrum of diseases and injuries. All these services differ in what they provide based on several factors such as location, target population, limitations due to budget and the standards of the health system in which they work.

Despite the variety of environments and retrieval systems across the world, it should be possible to define a reasonable standard of what medications the physician should find in the medical kit. This should be based on up-to-date evidence and treatment recommendations. There is currently little consolidated evidence for which drugs a given prehospital and retrieval service should carry. We will describe a core medication list for use in the aeromedical setting and also mention extra medications relevant to services in particular regions.

Few articles present evidence or have given peer-reviewed guidelines for intra- and interhospital transfer equipment.14 None were found that related specifically to prehospital services.

The objective of this study is to define medications to be carried on physician-staffed general prehospital and retrieval services and other remote area emergency services based on current evidence. Sub-specialised retrieval services (eg, neonatal) are not considered in depth.

METHODS

Using recommendations of evidence-based medical research guidelines,15-17 databases were identified that offer access to up-to-date validated and peer-reviewed information. Most of these databases are filtered and pre-appraised.

A review of current guidelines and evidence was independently performed by two of the authors using the sources and search terms shown in tables 1 and 2.

The general terms in table 1 were combined with a list of injuries and differential diagnoses as described in table 2. This table represents the spectrum of disease and injury as well as major complications and differentials established by reviewing the database of CareFlight Medical Services, Townsville, Queensland, Australia. This service offers the full range of prehospital and retrieval cases and is tasked directly by a consultant emergency physician. Cases range from medical and trauma primary missions to critical care and low-dependency interfacility transfers.

Retrieval physicians at this base work onboard a Bell 412 rotary wing aircraft operated by Emergency Management Queensland (EMQ)18 and also on a fixed wing Beechcraft Super King Air B200 aircraft operated by the Royal Flying Doctor Service of Australia (Queensland Section).9

Although this list is representative for the tropical environment of North Queensland, Australia, we feel that this CareFlight service offers a reasonably standard cross-section of prehospital and retrieval work. The general case mix is likely to be similar for services operating in temperate as well as tropical zones in both the Northern and Southern hemispheres. Pathologies specific to location (eg, envenomations) have been described separately. There is no attempt to describe the frequency of each condition as this is beyond the scope of this review. Certain environmental conditions (eg, hyperthermia) were complemented by their natural counterpart (eg, hypothermia), even if these were not encountered in our service.

The final list of pathologies was tested against data taken from the United Nations (UN)
Emergency Service provided in Aceh Province, Indonesia by Malteser International between September 2005 and September 2006. The purpose of cross-checking with a second service was to ensure that core pathologies were indeed similar. The comparison in this case led to the inclusion of malaria, but no other relevant medical search terms were identified as missing.

Using a service’s genuine database has allowed search terms to be based on diagnoses and injuries actually found in a prehospital and retrieval service and not on the authors’ personal choices. We have not attempted to define the “core list” of pathologies relevant to the prehospital and retrieval environment worldwide. Rather, we acknowledge that no single service (or even several services) can be representative for all such services. However, we are confident that this strategy has ensured an adequate broad-based framework for the search.

Data of patients treated between 1 August 2006 and 31 July 2007 were analysed to extract the CareFlight search terms. Patient data were collected between 28 September 2005 and 6 February 2006 from the UN Emergency Service in Aceh provided by Malteser International.

The above described search method had to be modified for parts of the airway and breathing section of the review—specifically, rapid sequence induction and maintenance of anaesthesia in the out-of-hospital setting. Despite the

Table 1 Search sources and general terms

<table>
<thead>
<tr>
<th>Searched sources</th>
<th>Web link</th>
<th>Search terms for all sources</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMJ Clinical Evidence</td>
<td>http://clinicaledge.bmj.com</td>
<td>management</td>
</tr>
<tr>
<td>Cochrane Library for Systematic Reviews</td>
<td>http://www.mrw.interscience.wiley.com/cochrane*</td>
<td>OR treatment</td>
</tr>
<tr>
<td>National Guideline Clearinghouse</td>
<td>www.guideline.gov*</td>
<td>OR guideline AND/OR acute</td>
</tr>
<tr>
<td>POISINDEX by Thomson</td>
<td>http://www.thomsonhc.com*</td>
<td>OR urgent</td>
</tr>
<tr>
<td>Micromedex GV</td>
<td></td>
<td>OR emergency</td>
</tr>
<tr>
<td>eMedicine from WebMD</td>
<td>www.emedicine.com</td>
<td>AND/OR field</td>
</tr>
<tr>
<td></td>
<td></td>
<td>OR prehospital</td>
</tr>
<tr>
<td></td>
<td></td>
<td>OR air-medical</td>
</tr>
<tr>
<td></td>
<td></td>
<td>OR air-ambulance</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AND/OR medication OR drug OR agent AND/OR adult</td>
</tr>
<tr>
<td></td>
<td></td>
<td>OR neonatal</td>
</tr>
<tr>
<td></td>
<td></td>
<td>OR paediatric</td>
</tr>
</tbody>
</table>

Table 2 Medication categories and diagnosis-related search terms

<table>
<thead>
<tr>
<th>Category*</th>
<th>Terms †(included but not encountered in CareFlight cohort)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Airway/breathing</td>
<td>Induction, intubation, rapid sequence, ongoing sedation, anaesthesia, narkeis, retungsdienst, asthma, severe, status asthmaticus, anaphylaxis, allergy, airway burn, inhalation trauma, COAD, COPD, chronic obstructive airway disease, exacerbation, group, respiratory distress, bronchiolitis, foreign body, airway</td>
</tr>
<tr>
<td>Circulation/cardiovascular</td>
<td>Hypovolaemia, dehydration, shock, haemorrhagic hypovolaemia, fluid resuscitation, distributive, cardiac arrest, PEA, asystoly, ventricular fibrillation, -tachycardia, tachyarrythmia, bradyarrythmia, complete heart block, supraventricular, SVT, AF, PSVT, WPW, hyperkalaeemic, torsades de pointes, cardiac failure, cardiogenic shock, acute pulmonary oedema, APO, acute coronary syndrome, ACS, myocardial infarct, NSTEMI, STEMI, unstable angina, pulmonary ambolism, PE, aortic aneurysm, ruptured, leaking, dissection, thoracic, abdominal, heat, -exhaustion, -stroke, syncope</td>
</tr>
<tr>
<td>Trauma</td>
<td>Analgesia, conscious, pain management, sedation, burns, spinal injury, fracture, dislocation, reduction, head injury, - penetrating, traumatic brain injury</td>
</tr>
<tr>
<td>Psychiatric</td>
<td>Psychosis, schizophrenia, sedation, aggression</td>
</tr>
<tr>
<td>Poisoning/overdose</td>
<td>Poisoning, overdose, tricyclic antidepressants, TCA, benzodiazepines, opioids, carbamazepine, paracetamol (acetaminophen), alcohol, polypampharmacy, organophosphates†, diphenhydramine†, digitalis†</td>
</tr>
<tr>
<td>Envenomation</td>
<td>Snake bite, envenomation, irukandji syndrome, marine stinger, jellyfish, stonefish, fish</td>
</tr>
<tr>
<td>Neurological/neurosurgical</td>
<td>Seizure, recurrent, status epilepticus, altered level of consciousness, delirium, stroke, cerebrovascular accident, CVA, subarachnoid, intracranial, subdural, -haemorrhage, -bleed, SAH, SDH, ICH</td>
</tr>
<tr>
<td>Surgical</td>
<td>Acute abdomen, gastrointestinal bleed, epistaxis, eye injury, - penetrating</td>
</tr>
<tr>
<td>Obstetric</td>
<td>Postpartum bleed, complicated labour, labor, third stage, shock, pregnancy, preterm, premature, rupture membranes, newborn, prematurity, eclampsia, pre eclampsia</td>
</tr>
<tr>
<td>Infection</td>
<td>Sepsis, no source, unknown source, septic shock, respiratory, abdominal, genito-urinary, soft tissue, necrotizing fasciitis, meningitis, brain, epidural, abcess, malaria†</td>
</tr>
<tr>
<td>Metabolic</td>
<td>Diabetic ketoacidosis, DKA, diabetic emergency, hyperglycaemia, hyperkalaeemia, hyponatraemia, hypokalaemia†, hypocalcaemia†</td>
</tr>
<tr>
<td>General</td>
<td>Vomiting, travel-, motion sickness, anxiety, agitation, drowning, near drowning, hypothermia†, decompression illness, -sickness, altitude illness†</td>
</tr>
</tbody>
</table>

*Respiratory, paediatric/neonatal, anaphylaxis/allergy merged into several categories.
†Not CareFlight Medical Services.
importance of this area, the chosen databases contained no evidence-based or peer-reviewed results so the world wide web, Medline and PubMed were searched for any other current information.

Not all search results were included for data extraction. If guidelines provided identical advice, the most recent was included. If information was available from higher grade sources, then the lower grade reference (eg, eMedicine) was not included unless it contained additional information.

Where evidence did not support specific drugs within a substance group, no author preference was applied. In this way the article attempted to eliminate personal preference and to deliver objective criteria for the choice of drug. However, it does reflect current opinion and evidence and, as such, it will date with the emergence of new evidence in the future.

The specific dosages and quantities of recommended drugs are beyond the scope of this article. It is also appropriate for organisations to carry a locally recognised drug dose book for adult and paediatric patients (eg, British National Formulary in the UK).

For the purpose of this article it is assumed that the available technical equipment enables the physician to use all the drugs described (eg, 12-lead ECG, ventilator, pacing facilities, defibrillator, syringe pump).

RESULTS
Figures 1 and 2 illustrate the range of clinical services provided over a 12-month period by the Townsville CareFlight Medical Service base.

Primary responses were predominantly tasked for trauma (47%), followed by cardiovascular emergencies (17.9%), of which half were acute coronary syndrome (ACS). Other common primary taskings were surgical emergencies (9.4%) and poisonings/envenomations (3.5%). Almost one-third of all interfacility transfers were performed for patients with cardiovascular problems (31.9%, ACS 24.9%), with trauma ranked second (23.5%).

A representation of the case mix in the UN Emergency Service in Aceh Province, Indonesia is shown in fig 3.

The search identified 241 potential reference sources (22 from BMJ Clinical Evidence, 49 from National Guidelines Clearinghouse, 52 Cochrane reviews, 3 from Micromedex, 113 from eMedicine from WebMD and 4 others); 144 were included for data extraction after initial review.

Medical search terms extracted from CareFlight case data were grouped into clinical categories (table 2).

All extracted drug recommendations are shown in table 3, in accordance with the clinical categories defined in table 2. For brevity, some drugs are not discussed at length in the paper but the references have been included in the table for completeness.

The recommendations for a standard drug kit are shown in table 4. Recognising the distinct differences in each prehospital and retrieval service, certain medication groups have been included in a separate column. These medications cannot be considered “core” but will vary, particularly with geographical location.

DISCUSSION
When considering the range of medications carried, it must be acknowledged that some services will have targeted tasking (eg, London HEMS, exclusively trauma) whereas others serve as a general prehospital emergency service. The following recommendations are predominantly aimed at services that attend a varied case mix of patients.

The drugs are discussed under headings for convenience, but there is considerable overlap for different agents (eg, opioids).

Airway management
Etomidate (unlicensed in Australia) is one of the most frequently recommended induction agents because of its favourable haemodynamic profile. Despite the current controversy regarding the side effect of adrenal suppression, the advantages are thought to outweigh the potential risk, particularly as adding a corticosteroid may compensate to some degree.

Ketamine has advantages in asthma and is also used for short-term sedation and analgesia because of its favourable effect on airway reflexes and its positive haemodynamic profile.

Thiopentone has been described as neuroprotective and has additional antiepileptic properties.

Prehospital intubation guidelines found in this search did not include propofol in their recommendations. This might be explained by its negative haemodynamic and respiratory effects, preference is given to etomidate. Its role in sedation is supported in the literature, especially when a short duration of action is preferred, and also as an alternative anticonvulsant agent. There is also a warning of lactic acidosis, especially in children, following prolonged use of propofol infusions which restricts its use in paediatric practice.

Fentanyl is preferred as an induction and sedation agent for neonatal patients. It has a faster onset of analgesic action and superior haemodynamic stability compared with propofol.

All current guidelines recommend suxamethonium as the primary muscle relaxant for intubation. However, in a few clinical situations it is contraindicated. For this reason, rocuronium should be included. It has a sufficiently quick onset of action to be used for rapid sequence induction, yet its duration of action is long enough to be useful for maintenance non-depolarising muscle relaxation.

Other non-depolarising muscle relaxants lack a significant advantage or evidence in their favour.

The reviewed guidelines suggest either midazolam or lorazepam as the primary benzodiazepine, the latter supported by
some evidence as being superior to diazepam in controlling seizure activity.31 32 Midazolam is more widely recommended and available for intravenous use for airway management.19 21 22 It is also suggested for sedating agitated25 30 or psychiatric patients33 and in the management of status epilepticus.28 34–36

It could be argued that the lack of active metabolites makes lorazepam a more ideal agent, but the option of intramuscular administration (and no need for refrigeration) gives midazolam a certain advantage in the prehospital setting.34

Obstructive airway disease and steroids
Asthma management guidelines are well established and recommend a short-acting β2 agonist as the first-line agent, usually salbutamol (albuterol)26 27 37–39 or, less commonly, terbutaline. In the out-of-hospital setting, intravenous preparations can be important and their effectiveness has an evidence base.40 In patients who are close to respiratory arrest, especially in the environmental extremes of the prehospital setting, intravenous drugs may be more reliable.

Beta2 agonists are also recommended in the treatment of hyperkalaemia41 42 and for tocolysis,43 44 although there is some evidence to question their effectiveness for the latter.

Ipratropium bromide is recommended as the anticholinergic drug of choice in asthma and chronic obstructive airway disease.26 27 37–39 47–49

Although there is some evidence to suggest a possible advantage from intravenous theophylline in the management of children with asthma (albeit with a significantly increased adverse effect of vomiting),37 other sources currently strongly discourage the use of theophylline and aminophylline.37

Current evidence firmly supports the early use of corticosteroids in asthma,26 27 37–39 50 51 anaphylaxis,72 53 chronic obstructive airway disease,65 54 croup,54 67 threatened premature labour including pre-eclampsia/eclampsia,29 43 45 56 fluid-resistant septic shock29 56–62 and altitude illness.65 Specifically, dexamethasone and methylprednisolone are directly supported by evidence in some of these clinical circumstances. Dexamethasone seems to be supported in the more acute situations.57 58 61 62 Despite some evidence for the use of methylprednisolone early in spinal cord injury,69 70 its use remains controversial. Among other things, it may do significant harm in patients with coexisting head injury.66

Circulation
Intravenous fluids are required for the management of trauma but also in many other clinical settings (eg, anaphylaxis, shock, dehydration, diabetic ketoacidosis). Current evidence does not show an advantage for either crystalloids or colloids,67–70 nor any specific substance in either group.71 Normal saline (NaCl 0.9%) is commonly considered as an appropriate choice for all situations and ages.29 52 67 69 72 73 The issue of sodium loading and hyperchloraemic metabolic acidosis69 should be acknowledged. Disadvantages of lactated Ringer’s solution during the acute resuscitation phase have been suggested.52 72

Acute haemorrhage is best corrected with blood itself or red packed cells.74 Although a physiological necessity in certain situations, no direct evidence was found that supports this recommendation. Some services have shown that the technical problems of maintaining the “cold chain” for blood products are not insurmountable. O negative red packed cell units are the obvious choice, being recognised as the universal donor blood group.

Another fluid for consideration is hypertonic (3%) saline, for which there is some evidence to suggest better efficacy than mannitol in treating increased intracranial pressure in head injury.75 76 Hypertonic saline also lacks the potential dangers of mannitol in hypovolaemia. Its use has also been suggested in the treatment of burns,69 and it might be safer in symptomatic hyponatraemia and poisoning with tricyclic antidepressants than sodium bicarbonate.77 78

The primary vasoactive substance in all current guidelines on advanced life support is epinephrine (adrenaline).57 58 79–83 It is also a primary choice or an option in the treatment of anaphylaxis, croup and different forms of shock.55 56 57 83

Reviews on vasopressors in shock in general were unable to recommend a single substance.84
Norepinephrine (noradrenaline) is suggested as the primary vasoactive substance for shock in pregnancy.25

For shock in newborn infants, dopamine is suggested as the primary choice.26 Dobutamine is recommended to treat low output situations (eg, cardiogenic shock, sepsis) due to its positive inotropic action.70,83

There was no evidence to suggest a survival benefit by choosing a specific substance.

In services which operate over long distances and provided they have appropriate intravascular access and monitoring, it may be sensible to carry several vasoactive and inotropic substances to cater for the individual patient.

Cardiovascular

Even though there is little evidence from prospective high quality research into antiarrhythmic drugs in resuscitation, there is currently a good consensus on the primary treatment of arrhythmias.67,68,79,81,82,87–91 Based on this consensus, the following drugs should be included: amiodarone, adenosine, atropine, calcium chloride, sodium bicarbonate, magnesium sulfate.

The guidelines on treatment of acute coronary syndrome (ACS), including prehospital management, are some of the best defined. Aspirin (acetylsalicylic acid), clopidogrel, nitroglycerin, opioid analgesia, heparin, \beta\) blockers and fibrinolytic drugs are “standard of care” in their indicated clinical setting.92–95

Morphine seems to be the recommended opioid in ACS,94,95 although little evidence was found to support its use. In addition, the longer duration of analgesic action makes morphine a reasonable choice on services that cover longer distances.

Table 3 Search result: drugs by clinical problem category

<table>
<thead>
<tr>
<th>Drugs identified in guidelines, recommendations</th>
</tr>
</thead>
</table>
| Airway, breathing | Suxamethonium, rocuronium, vecuronium, atracurium, pancuronium, thiopentone/thiopental, etomidate, ketamine, midazolam, short-acting \(\beta\) agonists iv, neb, sc (salbutamol/albuterol,terbutaline), corticosteroids iv, po, neb (methylprednisolone, prednisone, hydrocortisone, dexamethasone, budesonide), magnesiumsulfate, methylxanthines (theophylline), theophylline, sodium bicarbonate, atropine, propranolol, atenolol, enalapril, captopril, nifedipine, fentanyl, isoproterenol, gluburonate, adrenaline/epinephrine IV, SC, IM, H\(_1\)-antihistamines (diphenhydramine), H\(_2\)-antihistamines (ranitidine)[19–27 37 40 45 50 52–57 143–146]
| Circulation, cardiovascular | Colloids, crystalloids (NaCl 0.9%, lactated Ringer's) dopamine, dobutamine, norepinephrine/noradrenaline, epinephrine, vasopressin, corticosteroids (dexamethasone, hydrocortisone), adenine, amiodarone, magnesium, sodium bicarbonate, atipame, calcium (chloride, gluconate), beta-blocker (metoprolol, labetalol, esmolol, propranolol), calcium channel blockers (verapamil, nifedipine), amphotriens, isoprenaline, digoxin IV, lidocaíne, flecaainide, ajmalin, glucose, naloxone, sotalol, vasopressin, potassium, magnesium, analogies (morphine), heparin, LMWH (enoxaparin), nitrates (GTN) IV, SL, IV, SNP, loop diuretics (furosemide), fibrinolitics (repettile, alteplase, tenecteplase), aspirin, clopidogrel, ACE inhibitors, glucagon[25 33 37 47 78–80,102–105,108–115]
| Trauma | Normal saline, lactated Ringer's solution/Ringer lactate, hypertonic saline (3%), opioid analgesia (fentanyl, morhine), benzodiazepines (midazolam, diazepam, lorazepam), propofol, etomidate, phenytoen, midofenaxil, ketamine, methylprednisolone, mannitol, vasopressors, phenytoin, nimodipine, blood/red packed cells/O neg[86–88 75 78–80,108–115]
| Psychiatric | Lorazepam, midazolam, droperidol, haloperidol, cogentin, zopiclone[26 33 83 108–115]
| Poisoning | Atipame, glycocyprolate, charcoal, calcium, glucagon, epinephrine, sodium bicarbonate, N-acetylcysteine, hypertonic saline (3%), vasopressors, naloxone, thiamine, glucose, benzodiazepines, GTN, SNP, haloperidol, dopamine, renalemin, magnesium, insulin, inotraps, potassium, phenytoin, fidoacina[70,83–94 115–123]
| Envenomation | Snake antivenin, epinephrine, corticosteroids, antihistamines (H\(_1\) and H\(_2\)), opioid analgesia (morphine, fentanyl, meperidine), antiadipitics, crystalloid, colloid, inotraps, vasopressors, GTN, phenolamino, magnessium, ox-jellyfish-antivenin, vinegar, buvapivacaine[120–123 127]
| Neurological, neurosurgical | Glucose, thiamine, lorazepam, diazepam, midazolam, propofol, barbiturates (phenothion), phenotype/|nir|oprod|ox|yax|o|ni|a|g|e|s|tic|a|ns|t|ics|a|nt|ie|a|ni|a|g|e|s|tics (cephalospolin, gentamicin, fluoroquinolones)[115 116]
| Surgical | Proton pump inhibitors, crystalloid, blood, antiemetics, analgesics, antibiotics (cephalospolin, gentamicin, fluoroquinolones)[115 116]
| Obstetric | Steroids (betamethasone, dexamethasone), magnesium, terbutaline/salbutamol, indomethacin, nifedipine, oxytocin, ergot alkaloids (ergotamine), misoprostol, prostaglandin, labetalol, nifedipine, hydralazine, calcium, diazepam, thiopentone[28,32–34,64–66,75 76 150 152–154]
| Infection, sepsis | Crystalloids (normal saline), colloids, vasopressors (dopamine, norepinephrine), epinephrine, inotraps (dobutamine), hydrocortisone, \beta\)-lactem antibiotics (penicillin, third-generation cephalosporin, carbapenem), aminoglycosides (gentamicin), meropenem, metronidazole, ampicillin, cefotaxime, vancomycin, piperacillin-tazobactam, dexamethasone, hydrocortisone, prednisolone, aciclovir, cefazidime, paracetamol, artemesine, methoquine[25 30–32,54 62 76 90 110–113 157–159]
| General | Phenothiazines, butyrophenones, metoclopamide, H\(_2\)-antihistamines, muscarinic\(_2\)-antagonists, seroton 5HT3-antagonists (ondansetron), scopolamine (hyoscine), crystalloid, colloid, dopamine, dihydroxyquinolines, sodium bicarbonate, asparagine, dexamethasone, furosemide, mannitol, acetazolamide[63 72 108–112 114 116–118]

GTT, glycerol trinitrate; IM, intramuscular; IV, intravenous; LMWH, low molecular weight heparin; NEB, nebuliser; PO, oral; SL, sublingual; SNP, sodium nitroprusside.
There is evidence to support the use of nitroglycerin, not just in ACS,25–29 It should be available as a sublingual as well as an intravenous preparation. Its intravenous formulation is supported in the treatment of cardiac failure,83 103 and also for other hypertensive emergencies such as aortic dissection.100 The general familiarity with its administration as well as its safety profile make it a first-line choice compared with sodium nitroprusside which is recommended only with invasive monitoring.83

Prehospital thrombolysis in acute ST elevation myocardial infarction is indicated in the first 3 h after onset of symptoms, especially if the transfer to hospital is longer than 30 min. It is also indicated between 3 and 12 h if percutaneous coronary intervention cannot be performed within 90 min.94 96 Thrombolysis is also an option in pulmonary embolism, especially if the patient deteriorates into cardiac arrest.97–99

Tenecteplase and reteplase are the fibrinolytic drugs of choice.94 Loop diuretics (eg, furosemide) are strongly recommended in cardiac failure with pulmonary oedema81 105 and have a place in the management of hyperkalaemia.42

Acetazolamide has an important role in the treatment of altitude sickness and should be considered in services working in this environment.63 104

Metabolic/endocrine

Hypoglycaemia is best treated with intravenous glucose.107 Glucagon is a second-line treatment if intravascular or intraosseous access is unavailable.107 Its potential use should also be considered for calcium antagonist poisoning,108 and it has been suggested for the treatment of unresponsive hypotension in anaphylaxis for patients on β blockers.35

Diabetic ketoacidosis is a common and potentially fatal emergency. The primary treatment consists of fluid replacement (eg, NaCl 0.9%) and initiation of a short-acting insulin (eg, Actrapid) infusion while considering potassium levels.107

Services that provide patient care over long distances or in remote locations will be required to initiate insulin treatment. In this scenario, potassium (potassium chloride) will likely have to be replaced also. Without access to serum potassium levels, it is prudent to wait until the patient passes urine before giving potassium.73 107 109 Cooling requirements for insulin are not a unique problem and can be solved in the same way as carriage of blood products.

In any patient with an altered level of consciousness, glucose and thiamine may be required as part of good practice guidelines.25

Obstetric

Obstetric emergencies in remote areas are not uncommon as access to antenatal care may be limited. Tocolysis and steroids have already been mentioned for threatened premature birth. Nifedipine as an oral calcium channel antagonist is currently thought to be considered the best tocolytic drug25–28 and should be carried for that purpose. The management of birth and obstetric complications also includes oxytocin and ergot.
Prehospital care

alkaloids (eg, ergotamine). Strong recommendations exist and there is good evidence to support these two drugs.53 85 110–112

Eclampsia and severe pre-eclampsia require magnesium sulfate.50 113 114

Infection

A patient with sepsis or in septic shock will require fluids, vasoactive substances and steroids, as previously men- tioned.29 59 60 70

Early antimicrobial agents will be required, not only in sepsis but also in meningitis and malaria.39 61 113 115 There is no perfect single or combination treatment for bacterial sepsis.117 118

Availability, costs and local bacterial resistance patterns will have a great impact on the choice of agents. A review of all guidelines and evidence suggests a combination of ampicillin, a broad-spectrum cephalosporin (eg, cefotaxime, ceftriaxone) and vancomycin.61 115 119–121

Ceftazidime would offer good cover for neutropenic sepsis by itself.115 Meropenem is an alternative as it has a similar spectrum to aminoglycosides, acts very well against *Pseudomonas* and anaerobic bacteria and penetrates the blood-brain barrier easily.64

Some good quality evidence for the treatment of severe malaria supports intravenous artesunate in combination with mefloquine as being superior to older regimes.116 122 123

Aciclovir should be considered as the preferred treatment for herpes encephalitis on long distance services, especially for neonatal patients.56

It would be appropriate for individual retrieval services to liaise with the local microbiology service to select appropriate antimicrobial agents for the spectrum of infectious diseases likely to be seen in their region. The choice of antimicrobial agent should therefore be considered separately from the core drug selection.

Toxicology and toxinoology

Poisonings and envenomations were fairly common in the CareFlight patient cohort. It is not possible to prepare for all possible drug ingestions, but the most common and treatable should be considered. As such, these drugs cannot be considered “core”, but their inclusion will be decided at the local level. Several drugs already mentioned can also be used for this group of patients.

Atropine is an essential agent for the treatment of organophosphate poisoning.124 Calcium, glucagon and epinephrine may be required after calcium antagonist ingestion.109 Sodium bicarbonate or hypertonic saline and antiepileptic drugs are part of the pharmacological treatment of poisoning from tricylic antidepressants.78 125

Salicylate poisoning may require treatment with sodium bicarbonate, hydration and correction of hypoglycaemia.126

Amphetamine poisoning will likely require benzodiazepines, haloperidol for psychosis as well as nitroglycerin and loop diuretics for hypertension and pulmonary oedema.127

Beta blocker overdose can be problematic as the common vasoactive and inotropic substances may not work on the blocked receptors. Glucagon and insulin/dextrose are suggested as treatment.128 An alternative agent is vasopressin, and some guidelines also suggest vasopressin as an alternative treatment approach in cardiac arrest79 80 and refractory septic shock.59

N-Acetylcysteine is a drug that should also be included in the medication kit. It is proven to work129 and is almost 100% hepatoprotective if started within 8 h of paracetamol (acetamino-phen) overdose.130

Poisoning from benzodiazepines, carbamazepine, ethanol and narcotics will be best managed by protecting the airway as well as by cardiovascular support and treatment of hypoglycae- mia.131–134

Opioids can be reversed with intravascular or intramuscular naloxone, although this may generate other problems, especially in the prehospital setting.135 If the opioid action is reversed completely and too rapidly, a number of patients could become uncooperative or even violent. There is the possibility of acute opioid withdrawal but, more signifi- cantly, issues with patients who initially refuse further medical help and go on to develop difficulties due to the short action of naloxone.

Venomous plants and animals are uncommon or non-existent in some areas but are a major problem in others. Any service retrieving patients over long distances in areas with lethally toxic flora and fauna should consider adequate specific treatment and antivenin.

Snake antivenin can quickly reverse coagulopathy and neurotoxicity that might otherwise require ventilation or cause significant problems. Rhabdomyolysis may be avoided leading to a reduction in associated morbidity and mortality.136 137

In some Coelenterate envenomations (box jellyfish, *Chironex fleckeri*), resuscitation efforts can be futile unless antivenom is urgently administered (within 5–20 min), even if the hospital is relatively close.137

As described for antimicrobial agents, antivenins will not be required by all services so are not considered as core drugs but may be indicated for local retrieval services.

Local anaesthetic drugs can be very useful in easing pain after contact with marine animals such as stonefish,130 but also have a role in general trauma. Bupivacaine has a long duration of action and combination with lidocaine can hasten the onset of analgesia. Local anaesthetics can also facilitate procedures in prehospital trauma care (eg, tube thoracostomy). Lidocaine is also useful as a second-line antiarrhythmic drug.67 139

Simple issues like nausea, not usually considered a threat to life, can become a major problem for prehospital and retrieval services. H1-antihistamines such as cyclizine are one option,140 especially as they might also be helpful in allergy and anaphylaxis.52 53 Metoclopramide and ondansetron (especially for children) have shown general effectiveness.140 141

Scopolamine (hyoscine) has supporting evidence specifically for motion sickness.142

In line with accepted clinical practice and resuscitation guidelines, provision of supplemental oxygen is a standard of care.50 52 56 67 68

Anaphylaxis/allergy

Anaphylaxis and allergy have already been discussed in the footnote to table 2. Adrenaline, corticosteroids, crystalloids and/or colloids are core substances in the treatment of this condition and antihistamines also have a role.52 53

A summarised list of all recommended drugs is shown in table 4.

CONCLUSION

Prehospital physicians should aim to deliver proven and, if possible, evidence-based treatment to achieve the maximum patient benefit.

Much of the equipment carried by prehospital and retrieval services is based on team experience and local need. However,
this review presents evidence to suggest that certain drugs could form the basis for an international consensus on prehospital and retrieval drugs. It is hoped that the application of such a review will encourage collaboration and research between organisations to improve the evidence base in this area. Further studies looking at data from several prehospital and retrieval services internationally are recommended.

Competing interests: None.

Provenance and peer review: Not commissioned; externally peer reviewed.

REFERENCES

TREATMENT FOR PRIMARY POSTPARTUM HAEIMORRHAGE

Toxicity, acetaminophen.

overdose. Toxicity, salicylate.

133. Bailey H. Toxicity, salicylate.

132. Deshpande GG. Toxicity, carbamazepine.

